changing Quadratic Relations: The Value of 'a'

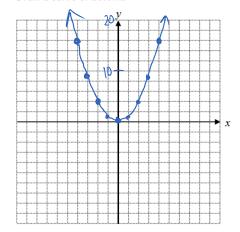
Quadratic Vocabulary:

A quadratic relation is modeled by a smooth symmetrical curve, known as a _____

The **key features** of a parabola are:

zeros	record: z -int = r and t	the a-intercepts (where graph crosses a-axis)
y-intercept	46(019: 2-int = c OK (0'c)	where graph crosses the y-cexis
vertex	record: verkey = (h, k)	the lowest highest point of parabola
axis of symmetry	vecord: x=#	an imaginary line of Symmetry that runs Vertically through vertex
optimal value	record: y_{-} * (MAX or Min)	how low/hight vertex reaches in terms of y-value min when parabola opens up MAX when parabola opens down

MBF 3C1


The Basic Parabola:

1. Complete the table of values for the relation $y = x^2$, including finite differences.

<i>y</i>							
x	x^2	y	1 st	2 nd			
-4	(-4)2	16	-J	†2			
-3	$(-3)^2$	9	~5	2			
-2		ч	-3	2			
-1		1	-1	2			
0		0	+1	2			
1		1	+3	2			
2		4	45	2			
3		q	+7				
4		16					

2. Plot the data on the coordinate grid. Draw a curve of best fit.

Name: _

Summarize the properties of the basic quadratic relation $y = x^2$.

- 1. The vertex is _____ and is also known as the _____ Or igin
- 2. The optimum value is ______ and it is a ______ because

parabola opens up

- 3. The axis of symmetry is 270. The graph is symmetrical about
- 4. The zeros of the relation are x-int=0 only of (0,0)
- 5. To graph the basic parabola without creating a table of values firm
 - Start at the vertex: (0,0).
 - Go right 1 and up 1, plot a point.
 Go right 1 and up 3, plot a point.
 Go right 1 and up 5, plot a point.
 These points are located on the right side of the y-axis.
 - Find the points on the left side using symmetry. OR repeat the pattern going left rather than right.
 - Draw a curve of best fit.

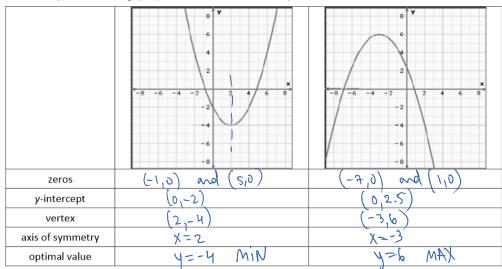
MBF 3C1	
Investigate	$y = ax^2$

Name:		

Function		Value of a in $y = ax^2$	Direction of Opening	Vertex	Axis of Symmetry	Same shape as $y = ax^2$?
a.	$y = x^2$	1	up	(0, 0)	x = 0	
b.	$y = 2x^2$	2	up	(0,0)	x=0	skinnier
c.	$y = 0.5x^2$	0.5	ve	(0,0)	a = 0	wider
d.	$y = -2x^2$	-2	down	(0,0)	χ=0	shinnil ++ effecte
e.	$y = -0.5x^2$	-0.5	down	(0,0)	2=0	wider + reflecte

How	does	the	value	of	a affect	the	basic	parabola?

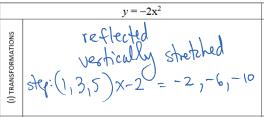
• when a is positive, the parabola opens up and has a minimum

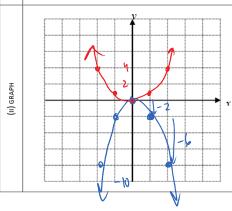

- when a is negative, the parabola opens down and has a MAXIMUM; this is known as a reflection

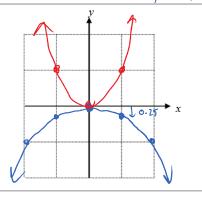
the shape of the parabola The **value** of a describes

- when a is between 0 and 1, the parabola is <u>wider</u> than $y = x^2$; known as a <u>vertical compression</u>
- when a is greater than 1, the parabola is $\underline{\text{vascowle}}$ than $y = x^2$, known as a $\underline{\text{Vertical Strete}}$

Example 1


State the key features of each graph. (Round answers to the nearest 0.5.)


MBF 3C1 Example 2


Name:

For each of the following, (i) state the transformations, and (ii) graph the parabola.

 $y=\frac{1}{4x^2} = 0.25 x^2$ Vertically compressed Step: $(1,3,5) \times 0.25$ = 0.25, 0.75, 1.25

