# using the TVM Solver

A Time Value of Money (TVM) Solver is a program used to Perform Financial Calculations.

- 1. Turn on your calculator.
- 2. Since you are dealing with money, two decimal places are appropriate.

Press the **MODE** key.

Cursor down one, and right three, to select

2 decimals places.

Press ENTER.

The results of all calculations will now be displayed with two decimal places.

3. a) Press the APPS key.
The applications list will appear:



**b)** Select 1: Finance... by pressing **ENTER** The TVM solver menu will appear:





- c) Press ENTER to select the TVM solver. There may be some numbers left in the TVM solver from a previous user. Just replace these numbers with yours.
- 4. What do all the variables mean?

N = total number of payments (# of years x # of times compounded)

1% = interest rate as a percent (★DO NOT CONVERT TO A DECIMAL★)

PV = present value or principal

PMT = amount of each payment (use ZERO since no additional payments other than the original one)

FV = future value

 $P/Y = payments \ per \ year \ \ (\text{use same number as C/Y even though there is only one original payment})$ 

C/Y = compounding periods per year

PMT: END BEGIN to select when payments are made → ALWAYS USE END

## MBF 3C1

| Name: |  |  |
|-------|--|--|

## **CALCULATING ON THE TVM SOLVER**

### Example 1

Esteban and Suzanne want to take their sons on a vacation to Florida in 1 year. They invest \$2000 in a Bond that pays 6% interest per year, compounded monthly. How much money will they have for their trip?

Use the cursor keys and number keys to enter the numbers where they belong.

 $N = 12 \leftarrow it is invested for 1 year x compounded 12 times$ 

1% = 6 ← interest rate is 6%/year

**PV** = 2000 ← the amount invested (principal)

**PMT** =  $0 \leftarrow$  always use for zero for single deposits

 $FV = \underline{\hspace{1cm}} \leftarrow the amount at the end of the investment$ 

 $P/Y = 12 \leftarrow same number as below$ 

 $C/Y = 12 \leftarrow$  since it is compounded monthly, there are 12 compounding periods per year

To solve (find the payment),

- i. scroll up to FV
- ii. press ALPHA, and then ENTER

Notice that the payment is negative.

The TVM Solver distinguishes between money received (+) and money given (-). The negative value makes sense since each payment is money that Esteban and Suzanne give up.

.. Esteban and Suzanne will have \$2123.36 in one year.

When using the TVM Solver:

- PV is negative because you pay money out when you invest a principal
- FV is positive because you receive money when an investment matures

## Example 2

Tatiana wants to buy a surround-sound system for her TV. It costs \$1100. Her account pays 1.8% interest per year, compounded monthly. How long will it take her save enough money? She has \$700 in her account right now.



## The Effects of Changing Conditions on Loans & Investments

#### INVESTIGATE:

Use the TVM Solver to investigate each of the following.

## 1. CHANGING THE TERM

| Principal<br>(PV) | Interest Rate<br>(I%) | Length of<br>Investment<br>(N) | Compounding<br>Period<br>(C/Y) | Amount<br>(FV) | Total Interest<br>(FV — PV) |
|-------------------|-----------------------|--------------------------------|--------------------------------|----------------|-----------------------------|
| i. \$10 000       | 4.5%                  | 5 years                        | 12                             | 12 517.96      | 2517.96                     |
| ii. \$10 000      | 4.5%                  | 10 years                       | 12                             | 15 669,93      | 5 669.93                    |
| iii. \$10 000     | 4.5%                  | 20 years                       | 12                             | 24 554.66      | 14554,66                    |
| iv. \$10 000      | 4.5%                  | 25 years                       | 12                             | 30 737,43      | 20 737,43                   |

a. How does changing the term affect an investment? Explain.

The longer the investment the more interest can grow on it.



## 2. CHANGING THE INTEREST RATE

| F    | Principal<br>(PV) | Interest Rate<br>(I%) | Length of<br>Investment<br>(N) | Compounding<br>Period<br>(C/Y) | Amount<br>(FV) | Total Interest<br>(FV — PV) |
|------|-------------------|-----------------------|--------------------------------|--------------------------------|----------------|-----------------------------|
| i.   | \$10 000          | 3.5%                  | 10 years                       | 12                             | 14183.45       | 4183.45                     |
| ii.  | \$10 000          | 4.6%                  | 10 years                       | 12                             | 15826.82       | 5826.82                     |
| iii. | \$10 000          | 7.5%                  | 10 years                       | 12                             | 21 120,65      | 11120.65                    |
| iv.  | \$10 000          | 9.4%                  | 10 years                       | 12                             | 25 506.23      | 15 506,23                   |

a. How does changing the interest rate affect an investment? Explain.

The bigger the interest rate the more interest gets accumulate.

## 3. CHANGING THE COMPOUNDING PERIOD

| P     | Principal<br>(PV) | Interest Rate<br>(I%) | Length of<br>Investment<br>(N) | Compounding<br>Period<br>(C/Y) | Amount<br>(FV) | Total Interest<br>(FV — PV) |
|-------|-------------------|-----------------------|--------------------------------|--------------------------------|----------------|-----------------------------|
| v.    | \$10 000          | 5%                    | 10 years                       | 2                              | 16386,16       | 6386.16                     |
| vi.   | \$10 000          | 5%                    | 10 years                       | 4                              | 16 436 .19     | 6436.19                     |
| vii.  | \$10 000          | 5%                    | 10 years                       | 12                             | 16 470.09      | 6470,09                     |
| viii. | \$10 000          | 5%                    | 10 years                       | 24                             | 16478.64       | 6478.64                     |

a. How does changing the compounding period affect an investment? Explain.

The more frequently an investment is compounded the more interest is accumulated.

## 4. Summary

a. What conditions would be best when investing money? Why?

- Bigger interest rate

- more frequent compounding

- leave it alone for a long time of interest

b. How would changing these same conditions (length of loan/investment, interest rate and compounding period) affect a loan?

They will affect a loan in the same way, however for a loan you want the opposite conditions to get charged less interest

