MBF 3C1

Name:

UNIT \mathcal{I} SURVIVAL GUIDE: Statistics \& Probability

- \qquad - the collection, analysis and interpretation of data
\bullet \qquad - all members eligible for a survey
- \qquad - a part of the population chosen for participation in a survey

Sampling Techniques

\rightarrow

- the population is divided into clusters and then some clusters are chosen for the survey
\rightarrow \qquad - members of the population that data is easily collected from \rightarrow \qquad - every member of the population has an equal chance of being selected
\rightarrow \qquad - the sample is made up of subgroups that are proportional to the subgroups in the population
\rightarrow \qquad - every $n^{\text {th }}$ member of the population is chosen
\rightarrow \qquad - members who have chosen to respond to the survey

BIAS - the prejudice of data collected in a survey
\rightarrow \qquad - sample does not fairly represent the population
\rightarrow \qquad - factors in the survey questions produce the result
\rightarrow \qquad - external factors influence results
\rightarrow \qquad - results influenced because surveys are not returned

Collecting \& Organizing One-Variable Data

-

1 attribute

- \qquad and
are used to organize data

Types of Data

ith labland
with a label and not a number
eg. collecting data about eye colour

- numerical data that does not have values between recorded values (no intervals) eg. collecting data about age- numerical data where values exist between recorded values (intervals) eg. collecting data about height

Eg. Write the words categorical, continuous, data discrete, and numeric in the appropriate boxes to show the relationship between types of data.

Displaying Data

- discrete data can be displayed in
and \qquad
- continuous data can be displayed in
- symmetrical distributions:
\rightarrow \qquad - middle value has the greatest frequency and the rest of the data is symmetrical
eg.

\rightarrow \qquad - frequencies increase as you move away from the centre of the graph
eg.

\rightarrow \qquad - all frequencies are approximately equal
eg.

- skewed distributions:
\rightarrow \qquad - highest frequencies are on the right and decrease to the left
eg.

\rightarrow \qquad - highest frequencies are on the left and decrease to the right
eg.

Measures of Central Tendency \& Spread

- \qquad - average (total \div \# of data)
- \qquad - middle number of data in numerical order (if there are two, they are averaged)
- \qquad - most frequently occurring value
- \qquad - spread of data (highest value lowest value)
- \qquad - best measure of spread

TI-83+ Instructions:

1. Press STAT and then 1
2. Enter the data into L_{1} by pressing ENTER after each entry.
3. Press STAT and cursor right once for CALC
4. Press 1 for 1 -Var Stats.
5. Type L_{1} by pressing $2^{\text {nd }} 1$ ENTER.
6. $\mathbf{S x}=$ the sample standard deviation (used when results are to be applied to an entire population, not just the data entered)
$\sigma x=$ the population standard deviation (used when only data entered should be considered)

Eg. Find the mean, median, mode and range for the set of data:

16	15	17	18	12	16	18
14	11	19	18	10	18	11

THEORETICAL PROBABILITY

\qquad - the chance of something happening written as a fraction, decimal or percent
eg. games of chance, weather, election results

- \qquad - the chance of
something happening in the perfect world

$$
\frac{\text { \# of successfulattempts }}{\text { total \# of attempts }}
$$

Experimental Probability

- \qquad - the chance of something happening based on experimental results
\# of favourable outcomes observed
total \# of observation

Compare Theoretical \& Experimental Probability

Theoretical	Experimental
\rightarrow uses mathematical theory \rightarrow quick \rightarrow when theory exists \rightarrow gives exact probability	\rightarrow perform several trials of an experiment \rightarrow time consuming \rightarrow when theory does not exist or is overly complicated \rightarrow only an estimate of the probability
As the number of trials in an experiment increases, experimental often approaches theoretical.	

Eg. Flip 2 coins.
a. What is the theoretical probability of getting 2 tails? Use a tree diagram

Statistics \& Probability in the Media

- probability predictions come from the statistical analysis of data
- statistics and probability are used by
\rightarrow \qquad
\rightarrow \qquad
\rightarrow \qquad
- statistics and probability are used to influence decisions, so the following should be considered:
\rightarrow \qquad
\rightarrow \qquad
\qquad
Eg. Explain how the following is misleading.

- compare sets of data by analysing and interpreting measures of central tendency and spread

