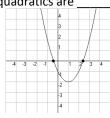
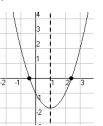
MBF 3C1


UNIT 1 SURVIVAL GUIDE: Quadratic Relations in Vertex Form

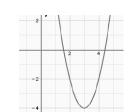
RECOGNIZING A QUADRATIC RELATION

• quadratic equations are degree _____ eg. $y = -2x^2 + 8$


•	quadratics have		second difference			
	х	$-x^2 - 3$	у	1 st	2 nd]
	0]
	1					
	2					
	3					
	4					

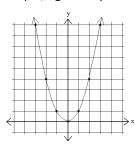
• quadratics are ____

THE KEY FEATURES OF A QUADRATIC RELATION

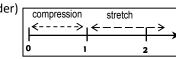

- _____ are *x*-intercepts
- the ______ occurs where the parabola crosses the *y*-axis
- the _____ is the highest/lowest point on a parabola
- the ______ is an imaginary symmetrical line through the vertex (written as
- _____ is the highest/lowest *y*-coordinate on the parabola and can be a _____

VERTEX FORM

- generalization: _____
- vertex is _____
- axis of symmetry is
- optimal value is _____; to determine max/min, see the sign of _____
- to state an equation in vertex form (given a graph):
 - start with $y = a(x h)^2 + k$
 - sub the _____in for *h* and *k*
 - use the ______to determine the value of *a* and sub it in
 - simplify if possible


eg.

 $y = a(x - h)^2 + k$


THE BASIC PARABOLA

- •
- all key features occur at the ______
- the optimal value is a _____
- use the ______to graph (right 1 up 1, right 1 up 3, right 1 up 5 and so on)

TRANSFORMATIONS

- sign of 'a' describes _____ (direction of opening and optimal value → _____)
- value of 'a' describes ______ (narrower) or ______ (wider) _____ stretch

- 'h' describes the _____ (remove *h* from bracket first)
- 'k' describes the _____
 - eg. A parabola is reflected, stretched by 5 and vertically translated down 3.

$$y = a(x - h)^2 + k$$

k =

UNDERSTANDING PROBLEMS RELATED TO VERTEX FORM

- draw sketches to help visualize the situation
- consider how key features relate to the context of the problem:

- initial point = _____

- break-even points = _____

- max/min profit/distance/height/etc. =

- point at which max/min occurs =