MBF 3C1

Name: \qquad
UNIT 2 SURVIVAL GUIDE: Quadratic Relations in Factored Form

COMMON FACTORING

1. find the \qquad (the term that divides into each term in the polynomial evenly)
Choose the greatest number and the most variables that will divide evenly into each term
2. divide the common factor into each \qquad in the polynomial
3. write the answer in proper form: \qquad eg. $12 x^{3}-4 x^{2}+10 x$

Factoring by Difference of Squares

- make sure the binomial has 2 terms
terms being even powers only

1. set up two brackets
2. put the square root of each term into each of the brackets
3. in one bracket separate the terms with a \qquad and in the other with a \qquad
eg. $49 x^{2}-64$

Factoring by Sum \& Product

- use this method when given a polynomial in the form \qquad
- look for 2 factors of \qquad which also add to \qquad

1. set up two brackets
2. put the square root of the \qquad into each of the brackets
3. put one factor of \qquad in the first bracket and the second in the other bracket
eg. $\quad x^{2}+7 x+6$

Mixed Factoring

- always check for \qquad first
- factor using the most appropriate method:

or \qquad (for trinomials)
- check the \qquad in the answer to see if they can be factored further
eg. $2 x^{4}-2$

Factored Form

\bullet

- r and t represent the \qquad and must be removed
from the bracket: $x-r=0$ and $x-t=0$

$$
x=r \quad x=t
$$

- to find zeros from an equation:

1. factor if necessary
2. remove the zeros (r and t) from the brackets
eg. $x^{2}-5 x+6$

- using a graph to create an equation in factored form:

1. locate \qquad $(r$ and $t)$
2. use the \qquad to find a

OR \qquad
3. sub a, r and t into \qquad
eg.

SUMMARY

- standard form:
$\Rightarrow a=$ reflection ($\mathrm{max} / \mathrm{min}$) and stretch/compression
$\Rightarrow c=y$-intercept
- vertex form: \qquad
$\Rightarrow a=$ reflection (max/min) and stretch/compression
$\Rightarrow h=$ horizontal translation and axis of symmetry ($x=h$) * remove from bracket
$\Rightarrow k=$ vertical translation and optimal value
$\Rightarrow \quad(h, k)=$ vertex
- factored form: \qquad
$\Rightarrow a=$ reflection ($\mathrm{max} / \mathrm{min}$) and stretch/compression
$\Rightarrow r$ and $t=$ zeros * remove from bracket
\Rightarrow TO FIND VERTEX:
$\Rightarrow h=$ \qquad $=\mathrm{a}$. of s .
$\Rightarrow k=$ \qquad = opt. val.
$\Rightarrow \quad(h, k)=$ vertex

Understanding Problems

Related to Factored Form

- draw sketches to help visualize the situation
- consider how key features relate to the context of the problem:
- initial point = \qquad
- break-even points/distance/time/etc. = \qquad
- max/min profit/distance/height/etc. = \qquad
- point at which max/min occurs =

