MBF 3C1

Name:

\qquad

UNIT 3 SURVIVAL GUIDE: Exponential Relations

| EXPONENT LAWS |
| :--- | :--- | :--- |
| Multiplication
 Law like bases being multiplied, _-
 exponents $\left(3^{2}\right)\left(3^{4}\right)=$
 Division Law like bases being divided,
 exponents $3^{6} \div 3^{2}=$
 Power of a
 Power Law power raised to an exponent,
 exponents $\left(3^{2}\right)^{5}=$
 Zero Law anything raised to the exponent
 zero equals _ $3^{0}=$
 Negative
 Exponent Law flip the base to it's__
 and change the exponent to it's $\left(3^{2}\right)\left(3^{-4}\right)=$ |

Power of a Product/Quotient \rightarrow distribute the exponent to each base
$\left(3 x^{2}\right)^{3}=$
$\left(x^{2} / 3\right)^{3}=$

Exponential Relationships

- exponential growth occurs when the relationship is \qquad (up to right) and b represents the \qquad _

- exponential decay occurs when the relationship is \qquad (down to right) and b represents the \qquad -

- exponential relations do not have x-intercepts because exponential relations will \qquad and solve for y

Characteristics of Exponential Relations

- an exponential equation is in the form \qquad , where $a=$ \qquad
$b=$ \qquad
- the table of values of an exponential relation has a \qquad which can be determined by dividing consecutive y-values ($y_{2} \div y_{1}, y_{3} \div y_{2}, y_{4} \div y_{3}$, etc.)

x	y	CR
0	1	$2 \div 1=2$
1	2	$4 \div 2=2$
2	4	$8 \div 4=2$
3	8	$16 \div 8=2$
4	16	

- the graph of an exponential relation is nearly \qquad at one end and either increases/decreases \qquad at the other

Solving Problems with Exponential Relations

1. start with the generalization for exponential relations (\qquad _)
2. sub in the \qquad (a)
3. sub in the \qquad (b)
\star for double use \qquad , for half-life use \qquad for triple use \qquad etc
\star for \% growth rate, \qquad -
\star for \% decay rate, \qquad
Example: A principal of $\$ 100$ is invested at 12% per year, compounded annually.
a. Write an exponential equation to represent the relationship.

$$
y=a b^{x}
$$

$$
y=
$$

b. What will the investment be worth in 25 years?

