Solving Problems with Geometry When using geometry to solve problems it is important to consider constraints. Constraints are conditions that limit or restrict options. Examples of constraints include Maximum Cost min/max size. Architects, engineers, fashion designers and other professionals deal with these types of constraints every day. ## **MEASUREMENT FORMULAS:** | 2-DIMENSIONAL SHAPE | DIAGRAM | PERIMETER FORMULA | AREA FORMULA | |---------------------|---------|--------------------------------------|------------------------------------| | rectangle | I W | P = 2I + 2w (for a square $P = 4s$) | $A = Iw$ (for a square $A = s^2$) | | parallelogram | h /o | P = 2b + 2c | A = bh | | trapezoid | a h d | P = a + b + c + d | $A = \frac{(a+b)h}{2}$ | | triangle | a h | P = a + b + c | $A = \frac{bh}{2}$ | | circle | ₹
d | C = πd
or
C = 2πr | $A = \pi r^2$ | | 3-DIMENSIONAL OBJECT | DIAGRAM | SURFACE AREA FORMULA | VOLUME FORMULA | |----------------------|---------|---------------------------|---------------------| | rectangular prism | , s | SA = 2lw + 2wh + 2lh | V = Iwh | | triangular prism | y c h | SA = bl + ah + bh + ch | $V = \frac{blh}{2}$ | | cylinder | | $SA = 2\pi r^2 + 2\pi rh$ | $V = \pi r^2 h$ | ## Example 1 Sometimes, basic safety considerations depend on understanding nets and volumes. Consider an engineer who needs to design a square-based berm (a shallow container to prevent the spread of oil from a leaking oil tank). The cylindrical oil tank is 20 m in diameter, and has a height of 20 m. The berm must have a height of 5 m. a. Make the appropriate calculations to find the minimum dimensions of the berm. Max Volume of oil if tunk is full $V = \pi r^2 h$ $V = \pi (10)^2 (20)$ V= 6283 m3 35,4 = 2 safer to overestimate - on 40 m by 40 m by 5 m - b. Select a suitable scale. Draw a net for the berm and a net for the oil tank. (= 211 (10) (=63