MBF 3	C1
-------	-----------

Name: _____

Solving Problems with Exponential Relations, b

Example 1

To determine the equation of an exponential relationship given a rate of growth or decay as a percentage:

	a. A principal of \$500 is invested at 8% per year, compounded annually. Write an exponential equation to represent the relationship.	 b. A new car costs \$20 000. It's value decreases 16% per year after it is purchased. Write an exponential equation to represent the relationship.
Start with the generalization for an exponential relation.	y=ab2	y=ab ^a
2. Sub in the initial amount, \triangle .	y = 500 ba	7= 90 000 pz
3. Sub in the common ratio, * for special words: • double use • for half-life use • for triple use * for Percent: • convert the percent to a decimal divide • for growth, • for decay, • for decay,	(=0.08) Increase (b=1+1) b=1+0.08 b=1.08 year	r=0.16 decrase 5=1-v 5=1-0.16 5=0.84 : y=20000 (0.84) x year

Example 2

The population of Alberta between 1987 and 2005 can be modelled by an exponential equation. The population in 1987 was (2.4 million) and the growth rate was (1.7%)

a. Write an equation to model the situation.

b. Use your model to calculate the population in 1985.

ation in 1985. x = -2 (2yrs. back from 1987) $y = 2400000 (1.017)^{2}$ y = 2320435 people c. Use your model to calculate the population in 2012.

- 1987 25 years y= 2400 000 (1.017)25 y= 3 657 927 people

= 240000 (1.017)