MBF 3C1 Name: Creating an Equation in Vertex Form

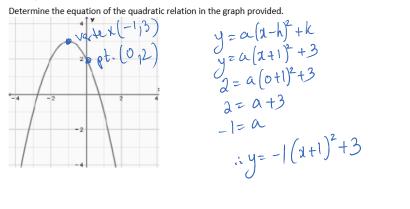
The vertex of a parabola is (3, -7). It also passes through the point (1, -5). State the equation of the quadratic.

1. State the generalization for a quadratic in vertex form.	$y = a(\mathbf{x} - h)^2 + k$
2. Substitute the vertex into the generalization for (<i>h</i> , <i>k</i>).	$y = a(x-3)^2 - 7$
3. Substitute the other point that the parabola passes through into the generalization for (x, y) .	$-5=a(1-3)^{2}-7-$
4. Solve for the variable <i>a</i> .	-5= a(-2)2-7 -5= ya-7 2=44 05=0
5. Sub the values for <i>a</i> , <i>h</i> , and <i>k</i> into the generalization for vertex form.	$y = 0.5(x-3)^2 - 7$

Example 2

Determine the equation of the quadratic relation that passes through the point (3, 1) and has a vertex at (5, -7).

$$y=a(x-h)^{2}+k$$


$$y=a(x-5)^{2}-7$$

$$1=a(3-5)^{2}-7$$

$$1=a(-2)^{2}-7$$

8=16
 $2=a$... y= $a(x-5)^{2}-7$

Example 3

Determine the equation of the quadratic relation in the graph provided.

