MBF 3C1

Name:			
ivallic.			

Comparing Theoretical and Experimental Probability

	THEORETICAL PROBABILITY	EXPERIMENTAL PROBABILITY	
Calculation Method?	mathematical theory	perform many trials	
Time Frame?	quick	time consuming	
When Used?	when theory exists	when theory is too complicated	
Product?	gives exact probability	gives un estimate only	

As the number of trials in an experiment increases, experimental probability often approaches theoretical probability.

Example 1

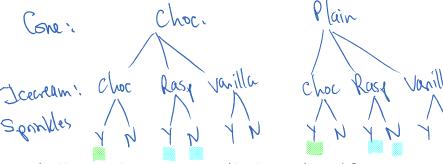
You roll a die 20 times and observe an even result 13 times.

- a. What is the experimental probability of rolling an even number?
- b. What is the theoretical probability of rolling an even number?

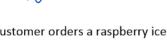
13 - 65%

even: 2,4,6
possible: 1,2,3,4,5,6

3 - 50%


c. What could be done to make the experimental value more accurate and closer to the theoretical value?

do more trials than 20.


Example 2

An ice cream shop offers multiple options. The ice cream can be served on a chocolate dipped cone or a plain cone, with chocolate, raspberry or vanilla ice cream. A customer can also request sprinkles or no sprinkles. All ice cream cone options have an equal chance of being chosen.

a. Create a tree diagram to list all possible ice cream cones.

b. How many ice cream cone combinations can be made?

c. What is the probability that a customer orders a raspberry ice cream cone?

d. What is the probability that a customer orders a chocolate ice cream cone with sprinkles?

