MBF 3C1

Name:

Common Factoring and Difference of Squares

The opposite of expanding is <u>Factoring</u>.

A Common factor ___ is an expression that can be divided into each term in a polynomial.

For example, 3x is a common factor for the polynomial $9x^3 - 15x^2 + 3x$, because 3x divides evenly into each of the three terms.

To Common Factor:

1.	Determine what the greatest common factor is for all the
	terms in the polynomial.

$$9x^3 - 15x^2 + 3x$$

Choose the greatest number and the most variables that will divide evenly into each term:

$$3x \left(\frac{9x^3 - 15x^2 + 3x}{3x} \right)$$

$$= 3d \left(3x^2 - 5x + 1\right)$$

Example 1

a.
$$\sqrt{\frac{8x^4 - 4x^3 + 20x^2}{4x^2}}$$

b.
$$25x^2 - 100$$

$$= 4a^2 \left(2a^2 - 1a + 5\right) = 25\left(a^2 - 4\right)$$

a.
$$(8x^4 - 4x^3 + 20x^2)$$

 $(7x^2 - 4x^2 + 20x^2)$
b. $(25x^2 - 100)$
 $(25x^2 - 100)$

=-27(2x3-5)

* if regative is 1st

pull it out by

dividing.

MBF 3C1

Name:

A number is a <u>perfect</u> <u>square</u> if when square rooted the result is a whole number. For example, 9, 16, 25, 81 and 100 are all perfect squares because when square rooted the answers are whole numbers $\rightarrow \sqrt{9} = 3$, $\sqrt{16} = 4$, $\sqrt{25} = 5$, $\sqrt{81} = 9$ and $\sqrt{100} = 10$.

If a variable has an **even** exponent then it is considered a perfect square.

To determine the square root of a variable, keep the base and divide the exponent by 2. For example, x^8 is a perfect square, its square root is x^4 .

A difference of squares is a binomial with two perfect square terms being subtracted.

TO FACTOR USING DIFFERENCE OF SQUARES:

- Check to ensure that difference of squares factoring is possible.
- 2. Create two sets of brackets.
- 3. Square root the first term of the polynomial and place one in each bracket in first term of the polynomial and place one in
- 4. Square root the second term of the polynomial and place one in each bracket in second position.
- 5. Separate the terms in one bracket with + and in the other with -.

$$9x^2 - 16$$

□ both terms perfect squares□ subtraction

(+)(-) (3x+4)(3x-4)

Example 2

a. $x^2 - 25$

= (1+5)(1-5)

b. $\int \frac{16x^2}{4x} - \int \frac{1}{3}y^2$

(4x+1y)(4x-1y)

c. $81x^2 - 4y^4$ $92 \quad 2y^2$

(92 + 242) (921 - 242)