Exponential Relations – Unit 3

Tentative TEST date_____

Reflect – previous TEST mark _____, Overall mark now_____. Looking back, what can you improve upon?

Learning Goals/Success Criteria

Use the following checklist to help you determine what you know well and where you need additional review.

DAYS & Pages	Can you	No, I cannot. I need to learn this.	I kind of get it. I don't get the right answers very often.	l get it. I could work on being more consistent.	Yes, I can. I have perfected this!
Day 1 Pg 2-3	Apply the exponent laws (multiplication, division, power of power, zero and negative exponent)?				
	Recognize an exponential relation from a table of values?				
Day 2 Pg 4-5	Recognize an exponential relation from a graph?				
	Recognize an exponential relation from an equation?				
	Graph an exponential relation given an equation or a table of values?				
Day 3	Calculate the common ratio for an exponential equation (growth or decay factor)?				
Pg 6-7	Understand the difference between exponential growth and exponential decay?				
	Create an equation for an exponential relationship?				
Day 4	Answer questions about exponential relationships in the context of real- life questions using a graph, table of values or equation?				
Pg 8-9	Use information from a real-life situation to model a quadratic relation (create an equation or graph or table of values)?				
Day 5 Pg 10-12	REVIEW				

DAY 1 – Exponent Laws

1. Write each as a single power and then evaluate if possible.

a. 14 ⁷ ×14 ⁸ ÷14 ¹³	b. $5^{35} \div (5^{26} \times 5^7)$	$c. \left(\frac{4^9}{4^6}\right)^3$
d. $\frac{16^{15}}{16^{12} \times 16^2}$	e. $2^6 \times 2^9 \div 2^{14}$	f. $3^{72} \times 3^2 \div 3^{72}$
$g. \left(\frac{6^{14}}{6^{13}}\right)^7 \div 6^5$	h. $\left(\frac{2^{14}}{2^{12}}\right)^3 \times \left(\frac{2^9}{2^8}\right)^2$	i. $\left(x^4 \div x^2 \times x^3\right)^2$

2. State each as a power with a positive exponent.

a. 3 ⁻²	b. 5 ⁻³	$c. \left(\frac{1}{2}\right)^{-8}$

3. State each as a power with a negative exponent.

a.	$\frac{1}{100}$	b. $\frac{1}{2^9}$	c. 25

Name: _____

4. Write each as a single power and then evaluate if possible.

a. $3^6 \div 3^9$	b. $(2^{-2})^3$	c. $(13^4 \div 13^{10})^0$
d. $\frac{5^8}{5^6 \times 5^4}$	e. 10 ⁻¹	f. $3^{-2} + 9^{0}$
g. $4^{0}(6+9)$	h. $8^2 \times 4^{-3}$	i. $(x^4 \div x^0 \times x^{-3})^{-2}$

More Practice:

6.
$$\left(\frac{1}{3^{-2}}\right)^2$$
 7. $\left(\frac{2}{5}\right)^{-2}$ 8. $(10x^5) \div (5x^2)$ 9. $(2y^3)^2(y^{-3})$ 10. $(-5x^6)^0$

DAY 2 – Characteristics of Exponential Relations

1. Use the mathematical models to determine whether the relation is exponential. Give a reason for each answer.

- 2. A pressure reader is used to measure the sound intensity of a bell. The relation $P = 200(0.5)^t$ estimates the sound pressure, *P*, in pascals, after *t* seconds.
 - a. Complete the table and sketch a graph for this relation.

t	$200(0.5)^{t}$	Р	1 st Ratios
0			
1			
2			
3			
4			

b. Is this relationship exponential. Give a reason for your answer.

- 3. On a television game show, the cash prizes were designed to resemble exponential growth. The prizes are listed below.
 - a. Show that these cash prizes do not actually grow exponentially.
 - Make a new table of 15 cash prizes that do grow exponentially. Start at \$100.

\$100	
\$200	
\$300	
\$500	
\$1000	
\$2000	
\$4000	
\$8000	
\$16 000	
\$32 000	
\$64 000	
\$125 000	
\$250 000	10
\$500 000	
\$1 000 000	

c. Which game show would you like to participate on? Why?

4. A club uses email to contact its members. The chain starts with 2 members who each contact three more members. Then those six members each contact 3 members, and so the contacts continue.

2)			b)	G	ranh						c)	State the x and y intercents
aj			0)	G	αμπ	11	 		 	(I	0)	State the x and y intercepts
x part of chain	y number of members contacted	1 st ratios.										
0	2											
1						#			++-			
			+									
								1.1.		l		

DAY 3 – Exponential Relationships

1. Sketch each of the following exponential relations on the grid provided.

a.
$$y = 5^x$$

	b.	$y = 2^x$
--	----	-----------

$$c. \quad y = \left(\frac{1}{2}\right)^x$$

d.
$$y = \left(\frac{1}{5}\right)^x$$

x	5 ^{<i>x</i>}	У
-1	5 ⁻¹	$\frac{1}{5}$ =0.2
0		
1		
2		
3		

x	2 ^{<i>x</i>}	у
-2		
0		
2		
4		
6		

x	$\left(\frac{1}{2}\right)^{x}$	у
-2		
-1		
0		
1		
2		

x	$\left(\frac{1}{5}\right)^{x}$	у
-2	$\left(\frac{1}{5}\right)^{-2} = \frac{1^{-2}}{5^{-2}} = \frac{5^2}{1^2}$	25
-1		
0		
1		
2		

2. Consider each graph from #1. How does the value of the base in each exponential relationship indicate what the graph will look like? Create a rule.

3. For each exponential relationship,

		Day	# of Fruit Flies	1 st ratios	Numb	er	Area	1 st ratios
		0	30		0		500	
		1	120		1		100	
		2	480		2		20	
		3	1920		3		4	
a.	state whether the relationship is growth or decay							
b.	state the equation							

- 4. A rubber ball drops from a height of 200 cm and bounces several times. After each bounce, the ball rises to 80% of its previous height.
 - a. Create a table of values to record the data for the first 5 bounces.

Number of Bounces	Height
0	
1	
2	
3	
4	
5	

- b. Write an equation to model the height, *h*, of the ball.
- c. Draw a graph to model the change in height of the ball.

DAY 4 – Solving Problems with Exponential Relations

1. Durham Region's Population, *P*, is projected to grow until 2031 based on the relation $P = 610\ 000(1.029)^n$, where *n* is the number of years after 1990.

a. What does 610 000 represent?

b. What is the growth rate?

A stamp has a current value of \$1.50. The value is going to increase by 7% every year.a. Write an equation to model the relation.

b. What was the value of the stamp 5 years ago?

- 3. You purchased a 2010 Camaro for \$35 000. The value of the Camaro decreases by 12% every year.a. Write an equation to model the relation.
 - b. What is the value of the Camaro in 3 years?

d. What was the population in 1980?

c. What is the value of the stamp in 10 years?

c. What is the value of the Camaro in 7 years?

c. What is the projected population in 2010?

- ery year.

4. You purchased a \$500 Canada Savings Bond. It's value is going to increase by 3% every year.

a. Write an equation to model the relation.

- b. What is the value of the bond in 10 years?
- c. What is the value of the bond in 20 years?

- 5. The Beluga Whale is one of Canada's Endangered Species. It's current population is 1000 animals and it's projected to decrease by 5% every year.
 - a. Write an equation to model the relation.

b. What will the population be in 10 years?

c. What was the population 5 years ago?

REVIEW

1. Write each as a single power and then evaluate if possible. No decimals or negative exponents!

j. 4 ⁶ ×4 ³	k. $(3^2)^3$	I. $7^5 \div 7^3$
m. 8 ⁻⁴	n. 10 ⁻⁴ ÷10 ⁻⁴	o. $(2x^6y^3)^6$
p. $(x^5y^9)(x^{12}y^{-5})$	q. 4 ³ ×2 ⁻²	$\mathbf{r.} \left(x^8 \div x^7 \times x\right)^{-5}$

- 2. Explain how the value of the base of an exponential relation can tell you what the graph of the relation will look like.
- 3. Explain how to differentiate between exponential growth and decay from
 - a. an equation?
 - b. a table of values?
 - c. a graph?

- 4. The amount of ASA (acetylsalicylic acid) in your bloodstream decreases exponentially with time. The following formula describes the amount of ASA in a typical patient's bloodstream in μ g/cm³ in terms of time *t* in hours after the peak dosage is: $A = 40(0.758)^t$
 - a. What is the initial dosage of ASA in the bloodstream?
 - b. At what rate does ASA decay in the bloodstream?

- c. How much ASA would be left in the patient's bloodstream after 5 hours?
- 5. The population of a town is 23 000. Each year, the population increases at a rate of 3.4%.
 - a. Write an equation to model the relation.
 - b. What was the population 10 years ago?
 - c. What will the population be in 8 years?
- 6. The population of ticks in Yarmouth is growing by 15 % per year. Estimates put the present population at 20 000 per square kilometre.
 - a. Write an equation to model this relation.
 - b. Estimate the population per square kilometre in 5 years.

- 7. In 2011, Joel purchased a Ferrari for \$120 000. The car depreciates by 4% per year.
 - a. Write an equation to model this relation.

- b. Calculate the value of his Ferrari after 5 years.
- c. How much will the car depreciate in 5 years?

8. A dose of Acetaminophen is broken down by the body at a rate of 17% per hour. If Shannon takes 1000 mg at 7 am, how much Acetaminophen will remain in her system at 12 noon? (Begin by writing an equation to model the relation.)