\qquad

UNIT 5
Trígonometry

VOCABULARY ESSENTIALS

1. An angle of \qquad is an angle that falls from the horizontal; also known as the angle of declination.
2. An angle of \qquad rises from the horizontal; also known as the angle of inclination.

3. \qquad is a symbol often used to represent a missing angle.
4. A \qquad triangle has one 90° angle.
5. Any triangle that is not a right triangle is an \qquad triangle.
6. An \qquad triangle has three acute angles.
7. An \qquad triangle has one obtuse angle.
8. A right angle is \qquad .
9. An acute angle is \qquad .
10. An obtuse angle is \qquad .

11. The sum of all the angles in a triangle is \qquad .
12. The \qquad is the longest side in a right triangle, across from the right angle.
13. The side labelled \qquad is across from the angle of focus in a right triangle.
14. The side labelled \qquad is attached to the angle of focus in a right triangle.
15. The \qquad is the angle given or the angle to be found in a right triangle.

TRIANGLE ESSENTIALS

16. To properly label a triangle, use small letters to represent the sides and capital letters to represent the angles.
17. The sides and angles opposite to each other should be labelled with the same letter.
18. In any triangle, the largest side is always across from the largest angle,
 the smallest side is always across from the smallest angle, and so on.
19. When a question says to solve a triangle, it means find every missing angle and every missing side.

TRIGONOMETRY ESSENTIALS

20. Calculators must be in degree mode.
21. The opposite operations to \sin , \cos and \tan are $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$.
22. When answering questions, round sides to 1 decimal, angles to a whole number and trig ratios to 4 decimals.

Name:
The Primary Trigonometric Ratios

The primary trigonometric ratios are used to find side lengths or angle measures in \qquad .

Slope Angle - the angle opposite to the rise and adjacent to the run; considered the angle of focus

Opposite Side - across from the slope angle

Adjacent Side - adjacent to the slope angle

Hypotenuse - the longest side of a right triangle across from the right angle

Complete the table below using the triangles provided. Round answers to a whole degree (no decimals).

Triangle	$\frac{\text { opposite }}{\text { hypotenuse }}$	$\sin \mathrm{A}$	$\frac{\text { adjacent }}{\text { hypotenuse }}$	$\cos \mathrm{A}$	$\frac{\text { opposite }}{\text { adjacent }}$	$\tan \mathrm{A}$
$\Delta \mathrm{ABC}$						
$\Delta \mathrm{XYZ}$						

1. What do you notice about the ratios of lengths of sides and the trigonometric ratios in both triangles?
\qquad

What are the primary trigonometric ratios?

Trigonometric ratios can be used to calculate a side of a right triangle if \qquad and
\qquad are known.

Example 1

a.	b.	c.

\qquad

Trigonometric ratios can be used to calculate an angle of a right triangle if \qquad are known.

Example 2

a.	b.	C.

To apply the primary trig ratios:

1. draw a diagram if one is not provided
2. determine the \qquad (the angle given or missing)
3. label the triangle with \qquad
\qquad and \qquad
4. determine which \qquad is to be used
5. solve for the missing \qquad or \qquad

Example 3

A construction engineer determines that a straight road must rise vertically 45 m over a 250 m distance measured along the surface of the road (this represents the hypotenuse of the right triangle). Calculate the angle of elevation of the road.
\qquad

The Sine Law

DRAW AN ACUTE TRIANGLE. Each angle should be	COMPLETE THE CHART FOR THE TRIANGLE.					
	Angle	Angle Measure	Sine of Angle	Length of Opposite Side	Ratios	
			Calculate the sine of each angle using a calculator		Calculate each of the following ratios sing a calculator.	
	$\angle \mathrm{A}$			$a=$	$\frac{a}{\sin \mathrm{~A}}=$	$\frac{\sin \mathrm{A}}{a}=$
	$\angle \mathrm{B}$			$b=$	$\frac{b}{\sin B}=$	$\frac{\sin B}{b}=$
	$\angle \mathrm{C}$			$c=$	$\frac{c}{\sin C}=$	$\frac{\sin \mathrm{C}}{c}=$
DESCRIBE ANY RELATIONSHIPS YOU NOTICE IN THE TABLES.						

The SINE LAW

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \quad \text { or } \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

can be used to calculate an unknown:

- side when two angles and any side are given
- angle when two sides and an opposite angle are given

When using the sine law, start with the unknown angle or side and then create the appropriate ratio to solve.
\qquad

Example 1

Find the measure of c.

Example 2

Find the measure of C.

Example 3

Two ships are located 15 nautical miles apart. The angle of Ship 1 to the entrance of the port is 55° with respect to Ship 2. Ship 2's angle to the entrance to the port is 45° with respect to Ship 1 . Which ship is closer to the port entrance? How far is this ship form port? Round your answer to the nearest tenth.
\qquad

The cosine Law

Can the following triangle be solved using the sine law? Why?

Use the Pythagorean Theorem to help solve the triangle. (Hint: Don't simplify exponents.)

Find an equation to determine the value of h in the left triangle. $\begin{aligned} h^{2}+x^{2} & =4^{2} \\ h^{2} & =4^{2}-x^{2} \end{aligned}$	$a^{2}+b^{2}=c^{2}$	Find an equation to determine the value of h in the right triangle. $\begin{aligned} h^{2}+(5-x)^{2} & =6^{2} \\ h^{2} & =6^{2}-(5-x)^{2} \end{aligned}$
	ations together $\begin{aligned} & 4^{2}-x^{2}=6^{2}-(5 \\ & 4^{2}-x^{2}=6^{2}-(5 \\ & 4^{2}-x^{2}=6^{2}-(5 \\ & 4^{2}-x^{2}=6^{2}-5^{2} \\ & 0 x+x^{2}=6^{2} \\ & 5^{2}-10=6^{2} \\ & 4 \cos B)=6^{2} \\ & a c \cos B=b^{2} \end{aligned}$	$\left.+x^{2}\right)$ $\begin{aligned} \cos B & =\frac{x}{4} \\ 4 \cos B & =x \end{aligned}$

The cosine law

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

can be used to calculate an unknown:

- side when two sides and a contained angle (the angle between two given sides) are given
- angle when three sides are given

When using the cosine law, the unknown angle or side will either be the first or last variable in the formula.
\qquad

Example 1

Find b.

25 cn

Example 2

Find A.

Example 3

Two hikers set out in different directions from a marked tree on the Bruce Trail. The angle formed between their paths measures 50°. After 2 hours, one hiker is 6 km from the starting point and the other is 9 km from the starting point. How far apart are the hikers, to the nearest tenth of a kilometre?
\qquad

Solving Problems with Trigonometry

Steps to solving trigonometry problems:

1. state \qquad and draw a \qquad
2. choose the appropriate \qquad

- For right triangles,
- use the \qquad : \qquad , \qquad and \qquad
$\rightarrow \quad$ if an acute angle is involved
- use the \qquad
$\rightarrow \quad$ if NO acute angle is involved
- For non-right triangles,
- the \qquad : \qquad can be used when
\rightarrow one pair of opposite side and angle must be given plus one more piece of information (the $3^{\text {rd }}$ angle can be found from subtracting two angles from 180°)
- the \qquad : \qquad can be used when
\rightarrow two sides and a contained angle are given
\rightarrow three sides are given
Use the following flowchart to help you decide which formula to use:

3. \qquad for the missing variable
4. make sure the answer \qquad in the context of the question
5. write a \qquad
\qquad

Example 1

From the top of the Niagara Escarpment, Juan sees a car below at an angle of depression of 40°. He is approximately 100 m above the car. How far is the car from the base of the escarpment? Round your answer to the nearest metre.

Example 2

Micah is standing on the ground between two buildings on the opposite sides of a park. The top of the first building is 152 m from Micah, at an angle of elevation of 38°, while the top of the second building is 175 m from Micah, at an angle of elevation of 53°. How far apart are the tops of the two buildings? Round your answer to the nearest metre.

Example 3

Sam is on a hiking trip. On the first section of the hike, he walks 5 km from the Loon Campsite to the Owl Campsite. Then, he turns 68° and hikes 7 km to the Eagle Campsite. He then returns to the Loon Campsite. What is the distance from the Eagle campsite to the Loon campsite, to the nearest kilometre?
\qquad

Trigonometry: Group Task

Instructions:

1. In a group of 3 or 4 , cut out the diagrams and formulas. Match each diagram and formula to the correct word problem. Glue your answers.
2. Cut out the problem strips. Divide the problems evenly between the group members. Each group member is to complete a full solution for their questions in the space provided.
3. Each person should get one other member of the group to check their answers to make sure there are no mistakes. Make any necessary corrections.
** Make sure your solution includes a final statement.**
4. Staple the problems together in order. Put all group member names on the cover sheet. Hand in.

$\tan \theta=\frac{o p p}{a d j}$	$\sin \theta=\frac{o p p}{h y p}$	$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\frac{a}{\sin A}=\frac{b}{\sin B}$	$\sin \theta=\frac{o p p}{h y p}$	$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$\frac{a}{\sin A}=\frac{c}{\sin C}$	$\sin \theta=\frac{o p p}{h y p}$	

\qquad

7.

A hockey net is 1.5 m wide. A player is 5 m from one goal post and 5.5 m from the other. Within what angle must she keep her shot in order to score a goal?
8.

A children's playground is triangular. Two sides measure 0.15 km and 50 m . The angle between them is 75°. Find the measure of the third side.

Diagram \quad Diagram

Formula

Solution
Solution

Peer edited by: \qquad
Completed by: \qquad
Peer edited by: \qquad

