MBF 3C1
Grade 11 College Math

Review

Word Equations

Use the pictures to determine each word or phrase.

Oco-cycle
-

Review: Integers

Multiplying and Dividing Integers

Rules:
$(+)(+)=(+)$
$(+)(-)=(-)$
$(-)(-)=(+)$
$(-)(+)=(-)$

Examples
$(-2)^{2}$
-2^{2}
$-8 \div(-2)$
-8×2

Adding and Subtacting Integers - TRAVEL ALONG A NUMBER LINE
Rules:
$(+)$ and $(+)=(+)$
$(+)$ and $(-)=($ sign of the bigger $)$
$(-)$ and $(-)=(-)$
$(-)$ and $(+)=($ sign of the bigger $)$

Examples

$$
\begin{array}{cccc}
5-6 & -5-6 & -5-(-6) & -5+19
\end{array}
$$

Order of Operations with Integers

Brackets
Exponents
Division or
Multiplication in the order they appear
Addition or
Subtraction in the order they appear
Examples

$$
40-36 \div 3^{2} \times(8 \div 2)+1 \quad-24 \div 4 \times(-2)-5(-3-1)^{2} \quad-8(-4) \div 2-(-3)(-2)
$$

Review: Fractions

Reminders

- A negative sign in a fraction means that the whole fraction is negative regardless of where it appears.

$$
-\frac{1}{2}=\frac{-1}{2}=\frac{1}{-2}
$$

It is always a good idea to move the negative out of the denominator when working with fractions.

- To convert a mixed number to an improper fraction, multiply the whole number by the denominator and add to the numerator.

$$
5 \frac{1}{3} \quad-8 \frac{1}{4}
$$

To convert an improper fraction to a mixed number, divide the numerator by the denominator and pull the whole number out of the fraction. The left over is the new numerator.

$$
\frac{11}{3}
$$

$$
-\frac{22}{5}
$$

Adding and Subtacting Fractions

1. Change all mixed fractions to improper fractions.

2. Move negative signs into numerators (and get rid of double signs).
3. Change all fractions so they have the same denominator (LCD).
4. Add and subtract ONLY numerators using the same rules as adding and subtracting integers.
5. Put answer in lowest terms.

Examples

$$
\frac{3}{8}+\frac{1}{4} \quad \frac{3}{-2}-\frac{1}{-14}-1 \frac{2}{7} \quad 5 \frac{1}{5}-1 \frac{2}{3}
$$

Multiplying Fractions

1. Change all mixed fractions to improper fractions.
2. Move negative signs into numerators (and get rid of double signs).
3. Multiply numerators together and denominators together using the same rules as multiplying integers.
4. Put answer in lowest terms.

Examples

$$
\frac{3}{5} \times \frac{-4}{7}
$$

$$
\left(\frac{4}{5}\right)\left(-1 \frac{7}{8}\right)
$$

$$
2 \frac{4}{7} \times 1 \frac{5}{9}
$$

Dividing Fractions

1. Change all mixed fractions to improper fractions.
2. Move negative signs into numerators (and get rid of double signs).
3. Change division to multiplication and change the fraction after the operation sign to its reciprocal. (For example, $\frac{2}{3} \rightarrow \frac{3}{2}, \frac{4}{9} \rightarrow \frac{9}{4}$, etc.)
4. Follow the steps for multiplying fractions.
5. Put answer in lowest terms.

Examples

$$
\frac{6}{5} \div \frac{-3}{2} \quad 3 \div \frac{1}{10} \quad \frac{18}{5} \div 4 \frac{1}{2}
$$

Order of Operations with Fractions

Brackets
Exponents
Division or
Multiplication in the order they appear
Addition or
Subtraction in the order they appear

Examples

$$
53 \frac{1}{2}-\left(\frac{-3}{4}\right) \quad\left(-\frac{3}{4}-\frac{7}{10}\right) \div\left(\frac{3}{10} \times 4 \frac{1}{6}\right)
$$

Review: Algebra \& Solving Equations

\qquad have variables that are identical in every way
\qquad have variables that are not the same

The \qquad allows you to multiply a term outside a bracket by each term inside the bracket A \qquad is a mathematical expression containing terms being added and/or subtracted.

A polynomial with 2 terms is a \qquad , and a polynomial with 3 terms is a \qquad -

A \qquad is a number grouped with one or more variables. It is also known as a \qquad .

Simplifying Algebraic Expressions

1. Remove brackets. Use the distributive property where necessary: $a(b+c)=a b+a c$.
2. Collect like terms.
3. Add/subtract like terms. For multiplication/division, terms do NOT need to be like, just combine like bases.

$4 x^{2}+6 x-3+4 x-10 x^{2}+6$	$\left(3 x^{2}+4 y-6\right)-\left(10 x^{2}-12 y-1\right)$	$\left(2 y^{2}+5 y+2\right)-\left(-y^{2}+3 y+2\right)$
$15-3(x+4 x y)-6(2 x+3 x y)$	$2\left(4 x^{2}+6 x-3\right)+6 x^{2}$	$\left(4 x^{2} y\right)\left(3 x y^{4} z\right)$
$16 x y^{2} \div 8 y$	$\frac{9 x^{3} y^{2}+18 x y-6 x^{2} y^{3}}{3 x y}$	$2 x(3 x-1)-4 x(6 x+5)$

Steps for solving equations:

1. Simplify both sides of the equation if possible.

- remove brackets using the distributive property
- remove fractions by multiplying every term by the LCD

2. Use inverse operations to group variables on one side of equation and constants on the other (BEDMAS backwards).
3. Use inverse operation to isolate variable.
4. Check your answer.

Note: Use proper form - there should be only 1 equal sign per line - all equal signs should line up vertically

Examples

$$
-8=3 n-14
$$

$$
y+6(y-3)=5(y+2)
$$

$$
\frac{3}{4} t-2=7
$$

$\frac{3 x-2}{4}=5$

$$
\frac{3}{4} t-2=\frac{1}{2}(t+2)
$$

Review: Trigonometry

Pythagorean Theorem

The Pythagorean Theorem is used to find a missing side length in a right triangle.

$$
\begin{aligned}
& \boldsymbol{c}= \\
& \text { is the longest side of a right triangle, always } \\
& \text { across from the right angle. }
\end{aligned}
$$

Calculate the missing side in each triangle.

Similar Triangles

Trigonometry

The primary trigonometric ratios are used to find side lengths or angle measures in right triangles.

To solve primary trigonometric problems:

1. Choose the 'angle of focus' (the angle given or required).
2. Label the sides (opposite, adjacent and hypotenuse).
3. Choose the appropriate trig ratio based on the information you have $\rightarrow \mathbf{S O H}-\mathbf{C A H}-\mathbf{T O A}$.
4. Sub in known values and solve for unknown.

$$
\sin (B)=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$\cos (B)=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan (B)=\frac{\text { opposite }}{\text { adjacent }}$

Reminders:

- when solving for a \qquad , use sin, cos or tan on your calculator, then cross multiply
- when solving for an \qquad , use $\sin ^{-1}, \cos ^{-1}$ or $\tan ^{-1}$ on your calculator

Calculate the missing side or angle indicated in each triangle.

Review: Geometry \& Measurement

Geometry

Find missing angles:
1.

2.

3.

4.

Perimeter \& Area

Perimeter- \qquad

Square	Rectangle	Triangle	Circle	
Irregular shapes				
$P=4 s$	$P=2 l+2 w$	$P=$ sum of all sides	$C=2 \pi r$ or $C=\pi d$	Add all outside sides together.

Area - \qquad

Square	Rectangle	Triangle	Circle	Irregular shapes
$A=s^{2}$	$A=l w$	$A=\frac{b h}{2}$	$A=\pi r^{2}$	Divide the shape into smaller regular shapes and add all the areas together.

Find the perimeter and area of each shape.

Surface Area \& Volume

Surface Area - \qquad

Rectangular Prism	Cylinder
$S A=2 l w+2 l h+2 w h$	$S A=2 \pi r^{2}+2 \pi r h$

Volume - \qquad

Rectangular Prism	Cylinder
$V=l w h$	$V=\pi r^{2} h$

Find the surface area and volume of each shape.

Review: Quadratics

1. Expand and simplify
a. $(-2 t-r)(-3 t+r)$
b. $(5 q-8 r)^{2}$
2. Factor each of the following
a. $3 x^{2}-6 x$
b. $d^{p}-12 d+35$
c. $121 x^{2}-9 y^{2}$
3. For the quadratic $y=-2(x-4)(x+6)$ calculate the following
a. the y-intercept
b. the zeros
c. the axis of symmetry
d. the optimal value
e. vertex

Review: Linear Relations

Finding Slope

Slope is the measure of steepness of a line. It is also referred to as rate of change.
USING A GRAPH

Slope is the comparison of vertical and horizontal lengths of the line.

The vertical length is known as rise.
The horizontal length is known as run.
The slope can be calculated with:

$$
\begin{aligned}
& m=\frac{r i s e}{r u n} \\
& m= \\
& m=
\end{aligned}
$$

USING COORDINATES

$$
\begin{aligned}
m & =\frac{\text { difference in } y \text {-coordinates }}{\text { difference in } x \text {-coordinates }} \\
m & =\frac{\Delta y}{\Delta x} \\
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Calculate the slope of the line between the points $\mathrm{A}(2,4)$ and $\mathrm{B}(-3,-1)$.

Finding the Y-Intercept

USING A GRAPH

Using an Equation

1. Put the equation in the form $y=\mathrm{m} x+\mathrm{b}$.
2. b is the y-intercept.

Calculate the y-intercept of $x-2 y+8=0$

The y-intercept is the point where the line crosses the y-axis.
Look at the y-axis and determine where the line crosses.

The point at the y-intercept is \qquad .

The y-intercept is \qquad .

Equation of the line is: $\mathrm{y}=$ \qquad $\mathrm{x}+$ \qquad

USING 2 Points

1. Find slope.
2. Use $y=m x+b$ to solve for b.

Find the y-intercept of the line between $(6,3)$ and $(4,13)$.

Finding the Equation of a Line

To determine the equation of a line the slope (rate of change) and (y-intercept) are required.

1. Find the slope (m) and y-intercept (b) using the methods outlined above.
2. Substitute the values of m and b into the generalization $y=m x+b$.
3. Rearrange the equation so it is in standard form $(a x+b y+c=0)$. (a standard form equation must not have fractions and the x-value should be positive)

State the equation of a line if slope is ${ }^{-1} / 3$ and the y-intercept is 6 .

Graphing Lines Using Slope and \mathbf{y}-Intercept

1. Find the y-intercept (b) and plot it in the y-axis.
2. Find the slope (m) and plot it using ${ }^{\text {rise }} /$ run. (rise up or down and always run right)
3. Connect the points with a straight line

$$
y=-3 / 2 x+5
$$

