Survival Guide

PYTHAGOREAN THEOREM

1. Find b
b

Unit 6 - Trigonometry

SimiLAR TRIANGLES

4. Find side IH

Name: \qquad 5.

Built in 1860, the Jupiter Inlet lighthouse is the oldest building in Palm Beach County. On a sunny day, a 2-meter tall tourist stands next to the lighthouse and casts a 1.5 -meter shadow. At the same time, the lighthouse casts a 24 -meter shadow. What is the height of the lighthouse?
2. Find c

3.

Check if a triangle is right angled:

Primary Trig Ratios

Sine

$$
\text { Sine of angle } A=\frac{\text { Opp }}{H y p}
$$

Cosine

Cosine of angle $\mathrm{A}=\frac{\mathrm{Adj}}{\mathrm{Hyp}}$

Tangent

Tangent of angle $A=\frac{O p p}{A d j}$

Survival Guide

Primary Trig Ratios

6.

A custodian secures a ladder of length 10 m against the side of the school. The ladder makes an angle of 70° with the ground.
Will the custodian be able to reach a window that is 7.5 m above the ground? Justify your answer.
7. A storm caused a 13.5 m hydro pole to lean over. The shadow of the pole is 11.8 m on the ground. Find the measure of the angle between the hydro pole and the ground, to the nearest degree.

8.

Hugo has his own small plane. He is planning his approach to the Kingston airport. He wants

to descend at an angle of 22°
from horizontal. If he starts
his descent at an altitude of
10000 ft , how long is his
glide path to the runway?

Unit 6 - Trigonometry
Name:

$\mathbf{A n g l e ~}$	Sine	Cosine	Tangent
$\mathbf{1}^{\circ}$.0175	.9998	.0175
$\mathbf{2}^{\circ}$.0349	.9994	.0349
$\mathbf{3}^{\circ}$.0523	.9986	.0524
$\mathbf{4}^{\circ}$.0698	.9976	.0699
$\mathbf{5}^{\circ}$.0872	.9962	.0875
$\mathbf{6}^{\circ}$.1045	.9945	.1051
$\mathbf{7}^{\circ}$.1219	.9925	.1228
$\mathbf{8}^{\circ}$.1392	.9903	.1405
$\mathbf{9}^{\circ}$.1564	.9877	.1584
$\mathbf{1 0}^{\circ}$.1736	.9848	.1763
$\mathbf{1 1}^{\circ}$.1908	.9816	.1944
$\mathbf{1 2}^{\circ}$.2079	.9781	.2126
$\mathbf{1 3}^{\circ}$.2250	.9744	.2309
$\mathbf{1 4}^{\circ}$.2419	.9703	.2493
$\mathbf{1 5}^{\circ}$.2588	.9659	.2679
$\mathbf{1 6}^{\circ}$.2756	.9613	.2867
$\mathbf{1 7}^{\circ}$.2924	.9563	.3057
$\mathbf{1 8}^{\circ}$.3090	.9511	.3249
$\mathbf{1 9}^{\circ}$.3256	.9455	.3443
$\mathbf{2 0}^{\circ}$.3420	.9397	.3640
$\mathbf{2 1}^{\circ}$.3584	.9336	.3839
$\mathbf{2 2}^{\circ}$.3746	.9272	.4040
$\mathbf{2 3}^{\circ}$.3907	.9205	.4245
$\mathbf{2 4}^{\circ}$.4067	.9135	.4452
$\mathbf{2 5}^{\circ}$.4226	.9063	.4663
$\mathbf{2 6}^{\circ}$.4384	.8988	.4877
$\mathbf{2 7}^{\circ}$.4540	.8910	.5095
$\mathbf{2 8}^{\circ}$.4695	.8829	.5317
$\mathbf{2 9}^{\circ}$.4848	.8746	.5543
$\mathbf{3 0}^{\circ}$.5000	.8660	.5774
$\mathbf{3 1}^{\circ}$.5150	.8572	.6009
$\mathbf{3 2}^{\circ}$.5299	.8480	.6249
$\mathbf{3 3}^{\circ}$.5446	.8387	.6494
$\mathbf{3 4}^{\circ}$.5592	.8290	.6745
$\mathbf{3 5}^{\circ}$.5736	.8192	.7002
$\mathbf{3 6}^{\circ}$.5878	.8090	.7265
$\mathbf{3 7}^{\circ}$.6018	.7986	.7536
$\mathbf{3 8}^{\circ}$.6157	.7880	.7813
$\mathbf{3 9}^{\circ}$.6293	.7771	.8098
$\mathbf{4 0}^{\circ}$.6428	.7660	.8391
$\mathbf{4 1}^{\circ}$.6561	.7547	.8693
$\mathbf{4 2}^{\circ}$.6691	.7431	.9004
$\mathbf{4 3}^{\circ}$.6820	.7314	.9325
$\mathbf{4 4}^{\circ}$.6947	.7193	.9657
$\mathbf{4 5}^{\circ}$.7071	.7071	1.0000

$\mathbf{A n g l e}^{\text {e }}$	Sine	Cosine	Tangent
$\mathbf{4 6}^{\circ}$.7193	.6947	1.0355
$\mathbf{4 7}^{\circ}$.7314	.6820	1.0724
$\mathbf{4 8}^{\circ}$.7431	.6691	1.1106
$\mathbf{4 9}^{\circ}$.7547	.6561	1.1504
$\mathbf{5 0}^{\circ}$.7660	.6428	1.1918
$\mathbf{5 1}^{\circ}$.7771	.6293	1.2349
$\mathbf{5 2}^{\circ}$.7880	.6157	1.2799
$\mathbf{5 3}^{\circ}$.7986	.6018	1.3270
$\mathbf{5 4}^{\circ}$.8090	.5878	1.3764
$\mathbf{5 5}^{\circ}$.8192	.5736	1.4281
$\mathbf{5 6}^{\circ}$.8290	.5592	1.4826
$\mathbf{5 7}^{\circ}$.8387	.5446	1.5399
$\mathbf{5 8}^{\circ}$.8480	.5299	1.6003
$\mathbf{5 9}^{\circ}$.8572	.5150	1.6643
$\mathbf{6 0}^{\circ}$.8660	.5000	1.7321
$\mathbf{6 1}^{\circ}$.8746	.4848	1.8040
$\mathbf{6 2}^{\circ}$.8829	.4695	1.8807
$\mathbf{6 3}^{\circ}$.8910	.4540	1.9626
$\mathbf{6 4}^{\circ}$.8988	.4384	2.0503
$\mathbf{6 5}^{\circ}$.9063	.4226	2.1445
$\mathbf{6 6}^{\circ}$.9135	.4067	2.2460
$\mathbf{6 7}^{\circ}$.9205	.3907	2.3559
$\mathbf{6 8}^{\circ}$.9272	.3746	2.4751
$\mathbf{6 9}^{\circ}$.9336	.3584	2.6051
$\mathbf{7 0}^{\circ}$.9397	.3420	2.7475
$\mathbf{7 1}^{\circ}$.9455	.3256	2.9042
$\mathbf{7 2}^{\circ}$.9511	.3090	3.0777
$\mathbf{7 3}^{\circ}$.9563	.2924	3.2709
$\mathbf{7 4}^{\circ}$.9613	.2756	3.4874
$\mathbf{7 5}^{\circ}$.9659	.2588	3.7321
$\mathbf{7 6}^{\circ}$.9703	.2419	4.0108
$\mathbf{7 7}^{\circ}$.9744	.2250	4.3315
$\mathbf{7 8}^{\circ}$.9781	.2079	4.7046
$\mathbf{7 9}^{\circ}$.9816	.1908	5.1446
$\mathbf{8 0}^{\circ}$.9848	.1736	5.6713
$\mathbf{8 1}^{\circ}$.9877	.1564	6.3138
$\mathbf{8 2}^{\circ}$.9903	.1392	7.1154
$\mathbf{8 3}^{\circ}$.9925	.1219	8.1443
$\mathbf{8 4}^{\circ}$.9945	.1045	9.5144
$\mathbf{8 5}^{\circ}$.9962	.0872	11.4301
$\mathbf{8 6}^{\circ}$.9976	.0698	14.3007
$\mathbf{8 7}^{\circ}$.9986	.0523	19.0811
$\mathbf{8 8}^{\circ}$.9994	.0349	283363
$\mathbf{8 9}^{\circ}$.9998	.0175	57.2900

