DAY 5 - Standard Form of a Line versus Slope Y-int Form

Rearrange into slope y-intercept form, then sketch

$$3x + y - 8 = 0$$

2.
$$2x-3y+12=0$$

$$y = -3z + 8$$
, $2x + 12 = 3y$

$$2x + 12 = 3$$

3.
$$x-2y+10=0$$

From the graph locate the slope and y-int then record the equation in slope y-int form. Then convert to standard from and check with the given equation in the picture.

slope =
$$\frac{1}{4}$$

equation in slope y-ing form:

Covert to standard form

$$4y = x + 8$$

 $4y - x - 8 = 0$

equation in slope y-in form:

Covert to standard form

$$2y = 5x - 4$$

 $2y - 5x + 4 = 0$

6.

equation in slope y-ing form:

Covert to standard form

7. The line 3x + 4y + C = 0 passes through (1, 2). Find the value of C.

$$3(1)+4(2)+c=0$$

 $3+8+c=0$
 $11+c=0$
 $c=-11$

9. A banquet hall charges according to the equation C = 25n + 250, where C represents the total cost in dollars to rent the hall, and n represents the number of people attending the event. If the total cost to rent the hall for a particular event was \$3375, how many people attended the event?

11. Mr. Singh has \$300 in a savings account that pays 0.5% per year simple interest. In the equation $A = 300 + (0.005 \times 300)n$, A represents the total amount in Mr. Singh's account in dollars, and n represents the number of years. At this rate, how long will it take for the balance in Mr. Singh's account to reach \$375?

$$375=300+115h$$

$$75=115h$$

$$50=1$$

$$if +alus 50ya,$$

8. The line y = 4x + b passes through (8, -3). Find the value of b.

$$-3 = 4(8) + b$$

 $-3 = 3a + b$
 $-35 = b$

10.

12.

Dawson knows that the formula for the perimeter of a rectangle is P=2l+2w. He has 180 m of fencing to enclose a rectangular play area with a maximum width of 32 m. What is the minimum length of the play area? Explain.

Dwight is a racecar driver. He knows the distance an object travels can be found using the formula $d = vt + \frac{1}{2}at^2$, where d represents the distance travelled in metres, v represents the starting speed in metres per second, t represents the time interval of the trip in seconds, and a represents the acceleration in metres per second squared during the interval.

Dwight travels 53 000 m by accelerating at 24 m/s 2 for 30 s from a fixed starting speed. What is Dwight's starting speed?

$$53000 = V(30) + \frac{1}{2}(24)(30)^{2}$$

 $53000 = 30 V + 12(900)$
 $53000 = 30 V + 10800$
 $42200 = 30 V$
 $1406.7 m/s = V$
3 the speed at the

(b+2