\qquad

Review for FINALS

FINAL TASK \#1 date \qquad
FINAL TASK \#2 date \qquad

Success Criteria

\square Students on IEP - if you will need more time to finish, arrange a ride afterschool on these days (or finish over your lunch that same day)
\square You must come to class on the dates above. If you miss any of these days, you must give a doctor's note in order to do the evaluation on another day.
\square Ensure your Survival Guides are complete and corrected. These you may use on PART \#1 (but not on PART \#2)
\square Complete this Review booklet. Check your answers with the file online: www.mrsk.ca

Date	pg	Topics	Done?	Corrected?
		Finish and correct your SURVIVAL GUIDES		
	$2-3$	Polynomials		
	$4-5$	Quadratics		
	$6-7$	Trigonometry		
	$8-10$	Measurement		
	$11-14$	EXTRA practice		
		ANSWERS - go online to see		

FORMULAS GIVEN on PART \#2:

Quadratic Relations	$y=a x^{2}+b x+c$	$y=a(x-r)(x-t)$	$y=a(x-h)^{2}+k$
Pythagorean Theorem	$c^{2}=a^{2}+b^{2}$		
Primary Trig Ratios	$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$	$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$	$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
Volume	Rectangular Prism $V=l w h$	Cylinder $V=\pi r^{2} h$	Square Base Pyramid $V=\frac{b^{2} h}{3}$
	Triangular Prism $V=\frac{b h}{2} l$	Cone $V=\frac{\pi r^{2} h}{3}$	Sphere $V=\frac{4 \pi r^{3}}{3}$
Surface Area	Rectangular Prism $S A=2 l w+2 w h+2 l h$	Cylinder $S A=2 \pi r^{2}+2 \pi r h$	Square Base Pyramid $S A=b^{2}+2 b l$
	Triangular Prism $S A=b h+a l+b l+c l$		

\qquad

Polynomials

1. Common Factor
a. $3 x^{2}+12 x+18$
b. $12 x^{2}+6 x+21$
c. $15 x^{2}-25 x+35$
d. $4 x^{2}+14 x$
e. $-20 x^{2}+15$
f. $-48 x^{2}-27 x$
2. Factor by Sum and Product
a. $x^{2}+7 x+10$
b. $x^{2}-6 x+9$
c. $x^{2}+4 x-12$
3. Factor by Difference of Squares
a. $x^{2}-4$
b. $81-x^{2}$
c. $4 x^{2}-25$
4. Factor Completely
a. $4 x^{2}+12 x-40$
b. $3 x^{2}+18 x+27$
c. $2 x^{2}+16 x+18$
d. $3 x^{2}-27$
e. $-5 x^{2}+20$
f. $x^{3}-16 x$
5. Expand and simplify
a. $(x+2)(x+5)$
b. $(2 x+3)(3 x-4)$
c. $(3-x)(4 x+5)$
d. $(4 x-1)^{2}$
\qquad
6. Expand and simplify
a. $(2-3 x)(4+x)$
b. $(6 x-4)^{2}$
c. $(2 p-7 q)(2 p-5 q)$
d. $(2 u-3 v)^{2}$
7. Factor each of the following
a. $15 p^{3}+21 p^{4}$
b. $x^{2}-11 x+30$
c. $16-81 x^{2}$
d. $x^{2}+3 x$
e. $y^{2}+15 y+56$
f. $25 r^{2}-36 s^{2}$
g. $2 x^{2}+10 x$
h. $x^{2}-x-72$
i. $144 r^{2}-49 s^{2}$
8. Find the dimensions of each rectangle
a)
$A=21 x^{2}+3 x$
b)
$A=x^{2}-4 x-5$
\qquad
\qquad

Quadratics

1. Identify whether each equation or table given is linear, quadratic or neither. Explain why.
a.
$y=3+5 x$
b.
$y=-4 x^{2}+7 x$
c.

\boldsymbol{x}	\boldsymbol{y}
-3	0
-2	7
-1	12
0	15
1	16
2	15

d.

\boldsymbol{x}	\boldsymbol{y}
0	2
1	4
2	6
3	4
4	2
5	1

2. Identify all the key features of the following graphs

	a.	b.	c.	d.
Max or Min ?				
Optimal Value				
Axis of symm				
Vertex				
Zeros/x-int				
Y-intercept				

a.

b.

c.

d.

d.
$y=2(x-2) \cdot(x+2)$
h.
$y=2 x^{2}-8$

5 | Final 10P Date: \qquad
4. Sketch quadratics
a) $y=2(x-2) \cdot(x+2)$ form?

x	y
2	
-2	

5. If the above parabola represents a hanging cable with
$y=$ height of the cable from support poles and
$\mathrm{x}=$ horizontal distance from the centre, both in meters
a. what is the minimum height of the cable?
b. how wide apart are the support poles?
b) $y=-2(x-3)^{2}+18$
form?

6. If the above parabola represents the shape of a door to a cathedral with
$y=$ height in feet, and $x=h o r i z o n t a l$ distance also in feet.
a. what is the maximum height of the door?
b. what is the width of the door at its base? (hint find zeros by subbing $\mathrm{y}=0$ and solving for x)
c) $y=-0.2 x^{2}+1.6 x+1.8$
factor to get zeros

7. If the above parabola represents profit made for selling ice-cream with
$y=$ profit in thousands of dollars and $\mathrm{x}=$ quantity of ice-cream sold also in thousands.
a. what is the maximum profit?
b. what is the quantity of ice-cream sold to reach this maximum profit?
c. what is the quantity of ice-cream sold to have zero profit?
\qquad

Trigonometry

1. Solve for the missing side
a)

b)

2. Solve for the missing side or angle
a.

b.

c.

d.

e.

f.

\qquad
3. Draw $\triangle M N O$ with $O N=8 \mathrm{~cm}, M N=6 \mathrm{~cm}$, and $M O=6$ cm . Use Pythagorean Theorem to verify if it's a right triangle.
4. Vince's model boat has a base 42 cm long. The horizontal length of the sail is half the length of the base of the boat. Determine the height of the sail

5.

To get from point A to point B you must avoid walking through a pond. To avoid the pond, you must walk 34 meters south and 41 meters east. Calculate how many meters would be SAVED if it were possible to walk through the pond.
8.

A forest ranger is in a fire tower 120 ft above the ground. She sights a fire at an angle of depression of 3°. How far is the fire from the base of the tower, to the nearest foot?

\qquad
\qquad

Measurement

a) $\triangle B C A$ is similar to \triangle \qquad b) Side EF corresponds to side \qquad
c) Side $\Lambda \mathrm{C}$ corresponds to \qquad d) Angle C corresponds to angle \qquad
e) Angle B corresponds to \qquad
2. Determine the value of the missing side on the similar triangles in the diagram
a)

Δ \qquad $\sim \Delta$ \qquad
\qquad

$\Delta ـ \sim \Delta$
\qquad
Δ \qquad $\sim \Delta$ \qquad
\qquad $=$ \qquad
\qquad
3.

At a certain time of the day, the shadow of a 1.5 meter boy is 5 meters long. The shadow of a tree at this same time is 9 meters. Draw a diagram and find how tall the tree is.
5. Draw the net (unfolded flat version) of this prism and label the dimensions.

$$
I=8 \mathrm{~cm}
$$

$$
\mathrm{h}=3 \mathrm{~cm}
$$

6. Find the surface area of the prism in question 5 .
7. Find the surface area of the cylinder below

4.

Two trees of different heights cast shadows on a sunny day.
One tree is 8 m tall and casts shadow that is 2.5 m long.
How tall is the other tree if it casts a 3 m shadow.
\qquad
11. For the triangular prism

a. What is the volume of the prism? Use units in your answer!

d. How much material was used to make the prism? USE units in your answer!
b. Draw the net (unfolded flat version) of this tent and label the dimensions.
c. Find the slanted length of the triangular part.
12. Convert the following
a. $12 \mathrm{~km}=$ \qquad m
b. $9.5 \mathrm{~g}=$ \qquad kg
c. $0.04 \mathrm{~L}=$ \qquad mL
d. 29 sq. yd . $=$ \qquad sq. ft.
e. 36 in $=$ \qquad cm
f. $75 \mathrm{~km}=$ \qquad mi

	Length	Mass	Volume
			$15 \mathrm{~mL}=1 \mathrm{tbsp}$
¢	$30.48 \mathrm{~cm}=1$ foot	$28.35 \mathrm{~g}=1$ ounce	$29.574 \mathrm{~mL}=1$ fluid ounce
3 ${ }^{0}$ ct	$2.54 \mathrm{~cm}=1 \mathrm{inch}$	$0.454 \mathrm{~kg}=1$ pound	$0.473 \mathrm{~L}=1$ pint
约	$1.6 \mathrm{~km}=1$ mile	$\begin{aligned} & 0.907 \mathrm{t}=1 \text { ton (US) } \\ & 454 \mathrm{~g}=1 \text { pound } \end{aligned}$	$\begin{aligned} & 3.785 L=1 \text { gallon } \\ & 1 L=4 \text { cups } \end{aligned}$
$\begin{aligned} & \text { 旨 } \\ & \frac{y}{4} \text { हैँ } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mm}=1 \mathrm{~cm} \\ & 100 \mathrm{~cm}=1 \mathrm{~m} \\ & 1000 \mathrm{~m}=1 \mathrm{~km} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~g}=1 \mathrm{~kg} \\ & 1000 \mathrm{~kg}=1 \mathrm{t} \end{aligned}$	$1000 \mathrm{~mL}=1 \mathrm{~L}$
	$\begin{aligned} & 12 \mathrm{in}=1 \mathrm{ft} \\ & 3 \mathrm{ft}=1 \mathrm{yard} \\ & 1760 \mathrm{yd}=1 \text { mile } \end{aligned}$	$\begin{aligned} & 160 z=1 \mathrm{lb} \\ & 2000 \mathrm{lb}=1 \text { ton } \end{aligned}$	$\begin{aligned} & 16 \mathrm{tbsp}=1 \mathrm{cup} \\ & 16 \mathrm{floz}=1 \text { pint } \\ & 2 \text { pints }=1 \text { quart } \\ & 8 \text { pints }=1 \text { gallon } \end{aligned}$

Temperature
${ }^{\circ} \mathrm{F}=1.8 \mathrm{C}+32$
${ }^{\circ} \mathrm{C}=\frac{5}{9}(F-32)$
\qquad

EXTRA Practice

1. Draw the following parabolas based on description provided
a. Draw the parabola with vertex of $(-2,4)$ and zeros at -1 and -3 .

b. Draw the parabola with a minimum value of 2 , no zeros and a y-intercept of 8 .

c. Draw the parabola with a zero at $(2,0)$ the vertex at $(3,-4)$ and a y intercept of $(0,12)$

2. a. Complete the difference table below and then graph the data.

x	y	$1^{\text {st }}$ differences	$2^{\text {nd }}$ differences
-4	-2		
-3	1		
-2	2		
-1	-2		
0	-7		
1			

b. Explain how the difference table helps you predict what the graph will look like.

c. Identify the following for the parabola

Vertex? Axis of Symmetry?
Optimal Value?
Max or Min?
3. Expand and simplify
a. $(-2 t-r)(-3 t+r)$
b. $(5 q-8 r)^{2}$
4. Factor each of the following
a. $3 x^{2}-6 x$
b. $d^{2}-12 d+35$
c. $121 x^{2}-9 y^{2}$

12|Final 10P Date: \qquad
5. For the quadratic $y=-2(x-4)(x+6)$ calculate the following
a. the y-intercept
b. the zeros
(hint sub $x=0$)
c. the axis of symmetry
(hint in middle of zeros)
d. the optimal value
(hint the y-value of the axis of symm \#)

e. vertex

(hint put axis of symmetry and optimal value together)

Name: \qquad
f. sketch
label vertex, zeros and y-int

6. Mark is a competitive diver. The time taken for him to surface from the bottom of the pool can be modelled by the relation $d=0.15 t^{2}-15$, where d represents Mark's depth in metres, and t represents time in seconds.
a. Graph this relation using a table of values.

t	$d=0.15 t^{2}-15$
-10	
-5	
0	
5	
10	

b. How deep is the pool?
c. How long does it take mark to reach the surface?

\qquad
7. The circus sells tickets for $\$ 6$. The circus owners want to increase their revenues, so they increase prices. They have noticed that ticket sales decrease by 60 tickets every time the price increases by $\$ 0.60$. The situation can be modelled by the relation $R=-30 n^{2}+600 n+6000$ which is represented in the following graph. R represents revenue in dollars and \underline{n} represents the number of times the price is increased by $\$ 0.60$.

a. Use the graph to determine the original revenue if no adjustments are made to the n. (ie. $\mathrm{n}=0$)
b. Use the graph to find the maximum revenue.
c. Use the graph to find how many times does the ticket price have to be increased to reach the maximum revenue?
d. Use the underlined information in the question to find what is the ticket price that results in the maximum revenue?
e. Use the equation to find what is the Revenue if $n=15$
8. Determine the measure of the missing angles or sides in each of the following diagrams using the primary trigonometric ratios.
a.

b.

d.

\qquad
\qquad
9. Use the Pythagorean Theorem to solve for the indicated side
a.
b.

10. For the similar triangles in the diagram

a. State the similarity statement and ratio of sides
Δ \qquad
\qquad
b. Find x .
11.

Find the surface area and volume of a cylinder given its radius is 10 inches and height is 20 inches.
12.

Find the volume of a rectangular prism given its dimensions: height 9 cm , length 12 cm and width 4.5 cm .
13.

Convert
a) $26 \mathrm{~km}=$ \qquad mi b) 5 quarts $=$ \qquad L c) 58 inches $=\ldots \quad$ yrds

Length

$30.48 \mathrm{~cm}=1 \mathrm{foot}$
$2.54 \mathrm{~cm}=1 \mathrm{inch}$
$1.6 \mathrm{~km}=1$ mile
$100 \mathrm{~cm}=1 \mathrm{~m}$
$1000 \mathrm{~m}=1 \mathrm{~km}$

$28.35 \mathrm{~g}=1$ ounce
$0.454 \mathrm{~kg}=1$ pound
$0.907 \mathrm{t}=1$ ton (US)
$454 \mathrm{~g}=1$ pound
$1000 \mathrm{~g}=1 \mathrm{~kg}$ $1000 \mathrm{~kg}=1 \mathrm{t}$

Mass

$16 \mathrm{oz}=1 \mathrm{lb}$ $2000 \mathrm{lb}=1$ ton

Temperature

${ }^{\circ} \mathrm{F}=1.8 \mathrm{C}+32$
${ }^{\circ} \mathrm{C}=\frac{5}{9}(F-32)$

Volume

$15 \mathrm{~mL}=1 \mathrm{tbsp}$
$29.574 \mathrm{~mL}=1$ fluid ounce
$0.473 \mathrm{~L}=1$ pint
$3.785 \mathrm{~L}=1$ gallon
$1 \mathrm{~L}=4$ cups
$1000 \mathrm{~mL}=1 \mathrm{~L}$

16 tbsp = 1 cup
$16 \mathrm{fl} \mathrm{oz}=1$ pint
2 pints $=1$ quart
8 pints $=1$ gallon
\qquad
\qquad

Answers to Polynomials

1.

a. $3\left(x^{2}+4 x+6\right)$
b. $3\left(4 x^{2}+2 x+7\right)$
c. $5\left(3 x^{2}-5 x+7\right)$
d. $2 x(2 x+7)$
e. $-5\left(4 x^{2}-3\right)$
f. $-3 x(16 x+9)$
2.
a. $(x+5)(x+2)$
b. $(x-3)(x-3)$
c. $(x+6)(x-2)$
3.
a. $(x+2)(x-2)$
b. $(9-x)(9+x)$
c. $(2 x+5)(2 x-5)$
4.
a. $4(x+5)(x-2)$
b. $3(x+3)(x+3)$
c. $2\left(x^{2}+8 x+9\right)$ can't do more
d. $3(x+3)(x-3)$
e. $-5(x+2)(x-2)$
f. $x(x+4)(x-4)$
5.
a. $x^{2}+7 x+10$
b. $6 x^{2}+x-12$
c. $-4 x^{2}+7 x+15$
d. $16 x^{2}-8 x+1$
6.
a. $-3 x^{2}-10 x+8$
b. $36 x^{2}-48 x+16$
c. $4 p^{2}-24 p q+35 q^{2} \quad$ d. $4 u^{2}-12 u v+9 v^{2}$
7.
a. $3 p^{3}(5+7 p)$
b. $(x-6)(x-5)$
c. $(4+9 x)(4-9 x)$
d. $x(x+3)$
e. $(y+7)(y+8)$
f. $(5 r+6 s)(5 r-6 s)$
g. $2 x(x+5)$
h. $(x-9)(x+8)$
i. $(12 r-7 s)(12 r+7 s)$
8.
a. length $=3 x$, width $=7 x+1$
b. length $=x-5$, width $=x+1$

Answers to Quadratics
1.
a. linear
b. quadratic
c. quadratic
d. neither
2.

	a.	b.	c.	d.
Max or Min ?	\min	\max	max	
Optimal Value	$\mathrm{y}=-4$	$\mathrm{y}=16$	$\mathrm{x}=0$	min
Axis of symm	$\mathrm{x}=-1$	$(-1,-4)$	$(-2,16)$	$(-1,0)$
Vertex	-3 and 1	-6 and 2	$\mathrm{y}=-8$	
Zeros/x-int	$(0,-3)$	$(0,12)$	same as vertex $(-1,0)$	
Y-intercept		$(0,-1)$	$(0,-8)$	

3.

a. standard
b. vertex
c. standard
d. factored
e. factored
f. standard
g. vertex
h. standard AND vertex form
a. factored form
b. vertex form
c.
$-0.2(x+1)(x-9)$
zeros $(-1,0)(9,0)$

5.
a. \min height $=-8$ meters
b. 4 meters wide

a. \max height $=18$ fee t
b.
$0=-2(x-3)^{2}+18$
$-18=-2(x-3)^{2}$
$9=(x-3)^{2}$
$\pm 3=x-3$
$+3+3=x$ or $-3+3=x$
$6=x$ or $0=x$
$\therefore 6$ feet wide
\qquad

Answers to Trigonometry

1.

a. 15
b. 21
2.
a. 37°
b. 62°
c. 32°
d. 97 units
e. 12 units
f. 61 units
3. no it is not
4. 21.7 cm
5. 9.1 m
6. 53 m is the diagonal, save 22 m .
7. 11 m
8. 2290 feet

Answers to Measurement

1.

a) $\triangle E F D$
b) side $B C$
c) side $D F$
d) angle F
e) angle E
2.
a) 6 units
b) side $a=9.8 \mathrm{~cm}$, side $b=7 \mathrm{~cm}$
c) side $x=2$ units, side $y=16$ units
d) side $w=17.5$ units
3. 2.7 meters 4. 9.6 meters
5.

6. $S A=92 \mathrm{~cm}^{2}$
7. $S A=628 \mathrm{~cm}^{2}$
8. $V=1177.5 \mathrm{~cm}^{3}$
9. $V=2616.7 \mathrm{~cm}^{3}$
10. $V=3052.1 \mathrm{~cm}^{3}$
11.
a. $V=96 \mathrm{~m}^{3}$
b.

c. slanted height $=5 \mathrm{~m}$
d. $S A=2($ triangles $)+2($ rectangles for sides $)+1($ rectangle for front $)=2\left(\frac{1}{2} 6 * 4\right)+2(8 \star 5)+1(8 \star 6)=152 \mathrm{~m}^{2}$
e. $S A=1520000 \mathrm{~cm}^{2}$
12.
a. 12000 m
b. 0.0095 kg
c. 40 mL
d. $261 \mathrm{ft}^{2}$
e. 91.44 cm
f. 46.875 miles
\qquad
\qquad

Answers to EXTRA Practice

1.

a.

b.

c.

b. graph is quadratic since 2 nd differences are the same
c. vertex $=(-2,2)$, axis of symm $=x=-2$, optimal value $=y=2, \operatorname{Max}$

3
a. $6 t^{2}+1 r t-r^{2}$
b. $25 q 2-80 q r+64 r 2$
4.
a. $3 x(1 x-2)$
b. $(d-7)(d-5)$
c. $(11 x+3 y)(11 x-3 y)$
5.
a. y - $\mathrm{int}=(0,48)$
b. $\operatorname{zeros}(4,0)(-6,0)$
c. axis of symm=x=-1

d. opt val $=\mathrm{y}=50$
e. vertex $=(-1,50) \quad f$.
6.

b. depth $=15$ meters c. reach surface in 10 sec
7.
a. original revenue $=\$ 6000$
b. max revenue $=\$ 9000$
c. $n=10+i m e s$
e. $\operatorname{Rev}=\$ 8250$
d. price $=\$ 6+\$ 0.60(10)=\$ 12$
8.
a. 13.1 m
b. 53°
c. 56°
d. 3.1 m
9.
a. 87.8 m
b. 111.4 m
10.
a. $\triangle A B C \approx \triangle M K L$
b. $x=1.7 \mathrm{~m}$
$\frac{A B}{M K}=\frac{B C}{K L}=\frac{A C}{M L}$
11. $S A=1884$ inches $^{2} V=6280$ in 3
12. $V=486 \mathrm{~cm}^{3}$
13.
a. 16.25 miles
b. 5 quarts $\times \frac{2 \text { pints }}{1 \text { quart }} \times \frac{1 \text { gal }}{8 \text { pints }} \times \frac{3.785 \mathrm{~L}}{1 \text { gal }}=4.7 \mathrm{~L}$
c. 58 inchs $\times \frac{1 \text { foot }}{12 \text { inches }} \times \frac{1 \text { yard }}{3 \text { feet }}=1.6$ yard

