## UNIT 6 - Trigonometry JOURNAL

## Big idea/Learning Goals

For this unit you must make sure your calculator is in DEGREE mode so that the answers will always come up correctly. In this unit you will learn how to use SINe, COSine, and TANgent buttons on the calculator to solve for sides or angles of right triangles. Not all triangles you see in real life may be right angled. But and are only used on right triangles. Then you till learn about: Sine and Cosine Laws. (There is no Tangent Law, since having the two that we develop enables us to solve ANY type of triangle). This unit is an introduction to what you will learn in grade 11. There are a lot of real life applications for trigonometry these you will see in the word problems of this unit.

| Date |  | Finished the journal? <br> Made corrections? | Did you do the HW? <br> Checked if it was correct? | Tentative TEST date: <br> Questions to ask the teacher: |
| :---: | :---: | :---: | :---: | :---: |
| 2days | Congruent triangles <br> DAY 1 HW Handout - find online on mrsk.ca website under this unit and this topic <br> DAY 2 HW Handout - find online on mrsk.ca website under this unit and this topic |  |  |  |
| 2days | Similar Triangles <br> DAY 3 HW text pg333 \#4,5,6,7,8,14,15 <br> DAY 4 HW text pg347 \#1,5,7,9,11,12,16,19 |  |  |  |
| 2days | SOH CAH TOA <br> DAY 5 HW text pg362 \#1ef,2ef,3gh,4gh,5cd,6cd,9,12 <br> DAY 6 HW text pg374 \#12,15,16,17,25,29 |  |  |  |
|  | Solve word problems <br> DAY 7 HW text pg382 \#11, 13, 14, 15, 18,20,26 |  |  |  |
| 2days | STRAND assignment |  |  |  |
|  | Sine Law <br> DAY 1 HW text pg 402 \#2,4,6,9,10,13,15 |  |  |  |
|  | Cosine Law <br> DAY 2 HW text pg409 \#3,5,8 Pg418 \#2,6,9 |  |  |  |
|  | Word Problems <br> DAY 3 HW text pg427 \#3,4,7,10,12 |  |  |  |

Reflect - previous TEST mark $\qquad$ Overall mark now $\qquad$ .

Calculate your potential final mark to see how averages work. Show your calculations here:

| potential final mark | $=($ overall mark now $)($ weight so far $)+($ future marks $)($ weight to come $)$ |
| ---: | :--- |
|  | $=(\quad)(\quad)+(\quad)$ |
|  | $=$ |

Were you able to attain your set goal before? Looking back, what else can you improve upon? Be specific in your planning.
$\qquad$

## DAY 1 \& 2 - Congruent Triangles

1. Proving something is FALSE

Conjectures can be proved false with a single
Example Conjecture: In a quadrilateral, if all angles are congruent, then all sides are congruent.
2. Proving something is TRUE

Conjectures can be proved true by using a logical argument, based on known facts. When a conjecture has been proved true, it is called a $\qquad$ .

A proof is a logical argument. In math, something is considered true if it has been proved. It is not enough for something to seem true. In writing a proof, you can only use facts that have previously been proved, or facts that are assumed true without proof. In this class, we will assume the following facts are true without proving them:

Alternate Angles (Z pattern)

Corresponding Angles (F pattern)

Opposite Angles (X pattern)

Congruent Triangles

Similar Triangles

Equilateral Triangles
$\qquad$
Prove Congruent then find the value of "?"
3. SSS

4. ASA or AAS

5. SAS


Talk about why SSA or AAA is not enough to prove congruency:
6. Not SSA

7. Not AAA

$\qquad$

## Two Formats for Proof

paragraph form - used by mathematicians
8.


S
Given: $R Q=S Q$ and $R P=S P$.
Prove: $\angle R=\angle S$.
The given information is: and $\qquad$ . $\overline{P Q=P Q}$ because
because of the . So $\triangle P R Q \cong \triangle P S Q$ congruent triangles. Therefore, because corresponding parts of congruent triangles are congruent.
10. Given: $P Q=R Q$ and $P S=R S$.

Prove: $\angle P=\angle R$.

11. Given: $\mathrm{AC}=\mathrm{BD}$ and $\angle 1=\angle 2$.

Prove: $\triangle \mathrm{CAE} \cong \triangle \mathrm{DBE}$.

two-column form - students prefer this one


Given: $\mathrm{AC}=\mathrm{BC}$ and $\angle 1=\angle 2$.
Prove: $\angle \mathrm{A}=\angle \mathrm{B}$.
Proof.

| Statements | Reasons |
| :--- | :--- |
| $1 . \mathrm{AC}=\mathrm{BC}$ | 1. |
| 2. | 2. Given |
| $3 . \mathrm{CD}=\mathrm{CD}$ | 3. |
| 4. | 5. |
| NOTES: |  |
|  |  |

$\qquad$

## DAY 3 \& 4 - Similar Triangles

Prove Similar then find the value of "?"

1. AAA or just AA

2. SSS in proportion

3. SAS in proportion

$\qquad$
Prove triangles are similar, then record the ratio of sides statement.
4. 


5.

6.

$\qquad$
Prove the triangles in each pair are similar. Then find the unknown side lengths
7.

8.

9.


$\qquad$
10. A right triangle has side lengths $5 \mathrm{~cm}, 12 \mathrm{~cm}$, and 13 cm .
a) A similar triangle has a hypotenuse 52 cm long. What is the scale factor?
b) What are the lengths of the legs of the triangle in part a)?
c) Find the area of each triangle.
d) How are these areas related?
12. Bill placed a mirror on the ground 5 m from the base of a flagpole. He stepped back until he could see the top of the flagpole reflected in the mirror. Bill is 1.5 m tall and saw the reflection when he was 1.25 m from the mirror. How high is the flagpole?
13. A person 1.9 m tall casts a shadow 3.8 m long. At the same time a tree casts a shadow 18 m long. Find the height of the tree.
11. $\triangle \mathrm{DEF} \sim \triangle \mathrm{XYZ}$. Find the area of $\triangle \mathrm{DEF}$.

$\qquad$

## DAY 5 - Introduction to Solving Right Triangles

In early times, similar triangles were used to solve problems about measurement.
One individual, Hipparchus, 140 B.C.E., found that right angle triangles had a special property.
Let's investigate what this special property is.
This diagram shows some similar right triangles with a common angle A. Measure the side lengths of each triangle and record your findings in the table below.

round to decimal place
one der

| Triangles | Side Opposite to $\angle A$ | Side <br> Adjacent to (beside) $\angle A$ | Hypotenuse | Calculate these Trigonometric Ratios |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\frac{\text { opposite }}{\text { hypotenuse }}$ | $\frac{\text { adjacent }}{\text { hypotenuse }}$ | opposite <br> adjacent |
| $\triangle A B I$ |  |  |  |  |  |  |
| $\triangle A C H$ |  |  |  |  |  |  |
| $\triangle A D G$ |  |  |  |  |  |  |
| $\triangle A E F$ |  |  |  |  |  |  |

1. Explain why the ratios of the triangles are the same.
2. Measure the angle A using the protractor: $<A=$ $\qquad$
3. MAKE SURE your calculator is in DEGREE mode!

Use the calculator to calculate the following trigonometric functions
$\sin A=$
$\cos A=$
$\tan A=$

$\qquad$
$\qquad$
4. $\operatorname{Try} \sin 90^{\circ}=$ $\qquad$ $\cos 90^{\circ}=$ $\qquad$ $\tan 90^{\circ}=$ $\qquad$
5. What can you conclude about which angles you can use (highlight) when labeling opposite/adjacent/hypotenuse for SOH CAH TOA on the right triangle?

NOTES: How and when to round decimals
6. Practice labelling triangles: Label the hypotenuse, the opposite, and the adjacent sides relative to each marked angle.
a)
b)

c)

d)

7. Practice using the calculator: Make sure your calculator is in DEGREE (DEG) mode

Given the angle find the ratio
a) $\sin 45^{\circ}$
b) $\cos 98^{\circ}$
c) $\tan 4^{\circ}$
d) $\cos 76^{\circ}=\frac{3}{x}$

Given the angle fnd the angle (use the SHIFT or $2^{\text {ND }}$ buttons)
e) $\sin \mathrm{A}=0.557$
f) $\cos C=0.705$
g) $\tan B=2.984$
h) $\quad \sin x=\frac{5}{6}$
$\qquad$

## NOTES:

8. Practice solving triangles: Determine the measure of the missing angles or sides

$\qquad$

## DAY 6 - More Trig Ratios

1. Find the three primary trigonometric ratios for $\angle A$, to four decimal places.
a)
b)

2. Find the measures of both angles $A$ and $B$ in part a) above. Discuss several methods of doing so.
3. Evaluate with a calculator. Round your answers to four decimal places.
a) $\sin 72^{\circ}$
b) $\cos 36^{\circ}$
c) $\tan 57.4^{\circ}$
4. Find the measure of each angle, to the nearest degree.
a) $\sin \theta=0.5189$
b) $\cos \mathrm{B}=\frac{9}{10}$
c) $\tan \theta=\frac{9}{14}$
5. Find the value of $x$, to the nearest tenth of a metre.
a)

b)

$\qquad$
6. Solve each triangle. Round side lengths to the nearest tenth of a metre.

7. In order to measure the height of a tree, Dan calculated that its shadow is 12 m long and that the line joining the top of the tree to the tip of the shadow forms an angle of $52^{\circ}$ with the flat ground.
a) Draw a diagram to illustrate this problem.
b) Find the height of the tree, to the nearest tenth of a metre.
$\qquad$

Angles of elevation and depression


When the line of sight moves from the horizontal in an downwards direction (you lower your eyes) this is referred to as an


DAY 7 - Problem Solve with Trig

1. Aimee and Russell are facing each other on opposite sides of an $8-\mathrm{m}$ telephone pole. From Aimee's point of view, the top of the telephone pole is at an angle of elevation of $52^{\circ}$. From Russell's point of view, the top of the telephone pole is at an angle of elevation of $38^{\circ}$. How far apart are Aimee and Russell?
2. A square-based pyramid has a height of 182 m and a base length of 280 m . Find the angle, to the nearest degree, that one of the edges of the pyramid makes with the base. Round your answer to the nearest degree.

3. A monument casts a shadow 13 m long. The sun's rays form an angle of $63^{\circ}$ with the ground. Calculate the height of the monument to on decimal place.

## 5.

Brook is flying a kite while standing 24 m from the base of a tree at the park. Her kite is directly above the $3-\mathrm{m}$ tree and the $25-\mathrm{m}$ string is fully extended. Approximately how far above the tree is her kite flying?
4. A ladder leans against a wall forming a $25^{\circ}$ angle with the wall. If the ladder reaches 2.8 m up the wall, how long is the ladder?
6. A carpenter leans a 4 m ladder against a wall. It reaches 3.5 m up the wall. What is the angle the ladder makes with the wall?
7. The foot of a ladder is 1.2 m from a fence that is 1.8 m high. The ladder touches the fence and rests against a building that is 1.8 m behind the fence. Draw a diagram, and determine the height on the building reached by the top of the ladder.
8. A tower casts a shadow 7 m long. A vertical stick casts a shadow 0.6 m long. If the stick is 1.2 m high, how high is the tower?
$\qquad$

```
NOTES:
Sine Law Cosine Law
```

$\qquad$

## DAY 8 - Sine Law

1. Draw a diagram and label the given information. Then, find the measure of the indicated side in each triangle, to the nearest tenth of a unit.
a) In acute $\triangle \mathrm{ABC}, \angle \mathrm{A}=72^{\circ}, \angle \mathrm{B}=68^{\circ}$, and $a=12 \mathrm{~cm}$. Find side $b$.
2. Draw a diagram and label the given information. Then, find the measure of the indicated angle in each triangle, to the nearest degree.
a) In acute $\triangle \mathrm{PQR}, \angle \mathrm{P}=64^{\circ}, p=5.7 \mathrm{~cm}$, and $r=4.1 \mathrm{~cm}$. Find $\angle \mathrm{R}$.
b) In acute $\triangle \mathrm{STU}, \angle \mathrm{S}=57^{\circ}, s=12 \mathrm{~m}$, and $u=9 \mathrm{~m}$. Find $\angle \mathrm{U}$.
$\qquad$
3. Draw a diagram and label the given information. Then, solve the triangle. In $\triangle \mathrm{DMC}, \angle \mathrm{D}=55^{\circ}, d=21 \mathrm{~cm}$, and $m=23 \mathrm{~cm}$.
4. Angela is building a garden in the shape of a triangle, as shown. She would like to put a fence on one side of the garden.

a) Find the angle formed by the fence and the side that is 15 m in length.
b) Find the length of the fence
$\qquad$

## DAY 9 - Cosine Law SAS version

1. Find the length of the indicated side in each triangle, to the nearest tenth of a unit.
a)

2. Sketch the triangle and label the given information. Then, solve the triangle. In $\triangle \mathrm{MCB}, \angle \mathrm{M}=61^{\circ}, c=18 \mathrm{~cm}$, and $b=21 \mathrm{~cm}$.
b)

3. Find the length of the bridge, to the nearest metre.

$\qquad$

## Cosine Law SSS version

4. Solve for the indicated angle, to the nearest degree.
a)

b)

5. Solve the triangle.

6. Laurissa is designing a reflecting pool, in the shape of a triangle, for her backyard.

a) Find the interior angles of the reflecting pool
b) Find the surface area of the water in the reflecting pool
$\qquad$

## DAY 10 - Problem Solve with Trigonometry

Determine whether the primary trigonometric ratios, the sine law, or the cosine law should be used to solve each triangle.
1.

3.

5. A shed is 8 ft wide. One rafter makes an angle of $30^{\circ}$ with the horizontal on one side of the roof. A rafter on the other side makes an angle of $70^{\circ}$ with the horizontal. Calculate the length of the shorter rafter to the nearest foot.
7. An intersection between two country roads makes an angle of $68^{\circ}$. Along one road, 5 km from the intersection, is a dairy farm. Along the other road, 7 km from the intersection, is a poultry farm. How far apart are the two farms? Round the answer to the nearest tenth of a kilometre.
2.

4.

6. A 10 m ladder leans against a wall. The top of the ladder is 9 m above the ground. Safety standards call for the angle between the base of the ladder and the ground to be between $70^{\circ}$ and $80^{\circ}$. Is the ladder safe to climb?
8. A triangle is built using three poles with lengths 17 m , 15 m and 9 m . What is the measure of the largest angle in the triangle?
9. Three islands - Fogo, Twillingate and Moreton's Harbour - form a triangular pattern in the ocean. Fogo and Twillingate are 15 nautical miles apart. The angle between Twillingate and Moreton's Harbour from Fogo is $45^{\circ}$. The angle between Moreton's Harbour and Fogo from Twillingate is $65^{\circ}$. How far is Moreton's Harbour from Fogo, to the nearest nautical mile?
11. Two tracking stations, 5 km apart, track a weather balloon floating between them. The tracking station to the west tracks the balloon at an angle of elevation of $52^{\circ}$, and the station to the east tracks the balloon at an angle of elevation of $60^{\circ}$. How far is the balloon from the closest tracking station?
13. From the top of a cliff that is 70 m in height, the angle of depression of a sailboat on a lake is $41^{\circ}$. What is the distance from the base of the cliff to the sailboat?
10. A golfer is faced with a shot that has to pass over some trees. The trees are 33 ft tall. The golfer finds himself 21 ft behind these trees, which obstruct him from the green. he decides to go for the green by using a $60^{\circ}$ lob wedge. This club will allow the ball to travel at an angle of elevation of $60^{\circ}$. Did he make the right choice? Explain.
12. Three cell phone towers form a triangle. The distance between the first tower and the second tower is 16 km . The distance between the second tower and the third tower is 19 km . The distance between the first tower and the third tower is 19 km . Calculate the angles between the cell phone towers.
14. What are the measures of the other two angles in this triangle, to the nearest degree?


## Proofs of the laws

Sine Law



## Proof of Quadratic Formula

