IS YOUR SQUARE COMPLETE? WORKSHEET KEY

State whether each trinomial is a perfect square.

1. $x^{2}+8 x+7 \rightarrow \mathbf{N O}$
2. $x^{2}-10 x+25 \rightarrow$ YES
3. $x^{2}-8 x+16 \rightarrow$ YES
4. $x^{2}+4 x+3 \rightarrow \mathrm{NO}$
5. $x^{2}-13 x+\frac{169}{4} \rightarrow$ YES
6. $x^{2}+12 x+27 \rightarrow \mathbf{N O}$

Find the value of "c" that makes each trinomial a perfect square.
7. $\mathrm{x}^{2}+8 \mathrm{x}+\mathrm{c} \rightarrow \mathrm{c}=16$

Step $1 \rightarrow$ Find one-half of 8.
Step $2 \rightarrow$ Square the result of "Step 1 ".
Step $2 \rightarrow$ Add the result of "Step 2" to "x ${ }^{2}+8 x$.
8. $x^{2}-6 x+c \rightarrow c=9$

Step $1 \rightarrow$ Find one-half of -6.
Step $2 \rightarrow$ Square the result of "Step 1 ".
Step $2 \rightarrow$ Add the result of "Step 2 " to " $x^{2}-6 x$.

9. $x^{2}-7 x+c$

Step $1 \rightarrow$ Find one-half of -7.
Step $2 \rightarrow$ Square the result of "Step 1 ".
Step $2 \rightarrow$ Add the result of "Step 2" to " $x^{2}-7 x$.

$$
\begin{aligned}
& \frac{-7}{2} \\
& \left(\frac{-7}{2}\right)^{2}=\frac{49}{4} \\
& x^{2}-7 x+\frac{49}{4}
\end{aligned}
$$

Solve each equation by completing the square.
10. $x^{2}+4 x+3=0 \quad \begin{aligned} & x^{2}+4 x=-3 \\ & x^{2}+4 x+(2)^{2}=-3+(2)^{2} \\ & (x+2)^{2}=1 \\ & x+2= \pm 1 \\ & x=-1 \quad \text { or } x=-3\end{aligned}$
11. $x^{2}-4 x=2$

$$
\begin{aligned}
& x^{2}-4 x+(2)^{2}=2+(2)^{2} \\
& (x-2)^{2}=6 \\
& x-2= \pm \sqrt{6} \\
& x=2 \pm \sqrt{6}
\end{aligned}
$$

12. $x^{2}+14 x-10=5$

$$
\begin{aligned}
& x^{2}+14 x=5+10 \\
& x^{2}+14 x+(7)^{2}=15+(7)^{2} \\
& (x+7)^{2}=64 \\
& x+7= \pm 8 \\
& x=1 \quad \text { or } \quad x=-15
\end{aligned}
$$

13. $4 x^{2}-20 x+25=0$

$$
\begin{aligned}
& 4 x^{2}-20 x=-25 \\
& 4\left(x^{2}-5 x\right)=-25 \\
& 4\left[x^{2}-5 x+\left(\frac{5}{2}\right)^{2}\right]=-25+25 \\
& 4\left(x-\frac{5}{2}\right)^{2}=0 \\
& \left(x-\frac{5}{2}\right)^{2}=0 \\
& x=\frac{5}{2}
\end{aligned}
$$

