PRACTICEfactoredStandardForms

 $y = x^2 + 5x + 6$

August 26, 2016 5:20 PM

	Factored form $y = (x - s)(x - t)$	<i>x</i> -intercepts	actored form to standard form Standard Form $y = ax^2 + bx + c$	<i>y</i> -intercept
a) y	=(x+2)(x+6)			
b)		x = 5 and x = -6		-60
c)		x = -2 and x = -1		-4
Factoring	Write factored expres		x- and y-intercepts for each. x-intercepts	<i>y</i> -interce
- uctoring	Standard form	Factored form		

1

Date:	Name:

- 3. For each of the following graphs answer these questions.
- a) What is the maximum/minimum?
- b) When did the maximum/minimum occur?
- c) What are the zeros?
- d) Find an equation to describe the graph. (Use factored and vertex form.)

ii)

Date:	Name:

- 4. For each of the following quadratic relations state the following:
- a) the direction of opening
- b) the zeros
- c) the equation of the axis of symmetry
- d) the maximum or minimum value of y
- e) the coordinates of the vertex
- f) sketch using vertex and zeros

i)
$$y = -2(x-4)(2x+5)$$

ii)
$$y = (10 + 2x)(-2x - 4)$$
 iii) $y = -(6 - 3x)(4 - 2x)$

iii)
$$y = -(6-3x)(4-2x)$$

Date:			
Date.			

Name:____

- 5. For the following equations answer the following:
- a) State the transformations of this parabola
- b) Sketch the relation (use vertex and step pattern, or table of values)
- c) Find the maximum or minimum.
- d) When did the parabola reach the maximum/minumum?

$$y = -0.1(x - 8)^2 - 3$$

6. Evaluate. Express your answer in rational form. Explain how you found your answer.

a)
$$(-3)^{-4}$$

c)
$$-(-6)^{-3}$$

d)
$$7^{-3} \div \left(\frac{7^2}{7^{-1}}\right)^{-2}$$

e)
$$-9^{-2} + \left(\frac{9^1}{6^2}\right)^{-1}$$

f)
$$\frac{4^3}{16^0} \times \left(5^2 \times 5^{-3}\right)^{-2}$$

7. Without evaluating, write the given numbers in order from least to greatest.

$$6^{-5}$$
, 2^{-1} , $(-8)^3$, $(0.001)^{-2}$, $(-10)^4$

PRACTICE Factored & Standard Forms

Expanding Complete the chart below by changing from factored form to standard form. (FOIL)

panding Complete the chart	below by changing from ta	ctored form to standard for	rm. (FOIL)
Factored form	x-intercepts	Standard Form	y-intercept
y = (x - s)(x - t)	•	$y = ax^2 + bx + c$,
a) $y = (x + 2)(x + 6)$	X=-2 and X=-(e	$y = x^2 + 2x + 6x + 12$ $y = x^2 + 8x + 12$	(0,12)
$y=\alpha(x-5)(x+6)$	x = 5 and $x = -6$	y=2(x2+6x-5x-30)	-60 Sub (0,-60)
-60= a(-5)(6) -60= -30a 2=a		y= 2x2+2x-60	
$\frac{2}{2} = 0$ $\frac{2}{2} = 0$ $y = 0 = 0 = 0$ $-4 = 0 = 0 = 0$ $-2 = 0 = 0$ $\frac{2}{2} = 0$ $-2 = 0 = 0$ $\frac{2}{2} = 0$	x = -2 and $x = -1$	y=-2(x²+2x+12+2) y=-2x²-6x-4	Sub (0,-4)
1.75-2 (NT C)(M)			

2. Factoring Write factored expressions and determine the x- and y-intercepts for each

ctoring		ns and determine the x- a		
	Standard form	Factored form	x-intercepts	<i>y</i> -intercept
a)	$y = 8x^2 + 10x$	y=22(42+5)	X=0 and X=-5	(0 ₁ 0)
b)	$y = x^2 + 5x + 6$	y=(x+2)(x+3)	x=-2 ad x=-3	(0/6)

Date:

Name:_____

- 3. For each of the following graphs answer these questions.
- a) What is the maximum/minimum?
- b) When did the maximum/minimum occur?
- c) What are the zeros?
- d) Find an equation to describe the graph. (Use factored and vertex form.)

ii)

c) x=-5 and x=3d) factored: y=a(x+5)(x-3)sub pt. (-1,32) 32=a(-1+5)(-1-3) 32=a(4)(-4) 32=-16a -2=a... y=-2(x+5)(x-3)retex $y=-2(x+1)^2+32$

Jea (x+1,5)² - 3.125 sub pt. (1,0) $0 = \alpha (1+1,5)^2 - 3.125$ $3.125 = \alpha (2.5)^2$ $3.125 = 6.25 \alpha$ $0.5 = \alpha$ $y = 0.5(x+1.5)^2 - 3.125$ factored y = 0.5(x-1)(x+4) 2

Date:

Name:

- 4. For each of the following quadratic relations state the following:
- a) the direction of opening
- b) the zeros
- c) the equation of the axis of symmetry
- d) the maximum or minimum value of y
- e) the coordinates of the vertex
- f) sketch using vertex and zeros

i)
$$y = -2(x-4)(2x+5)$$

a)
$$50^{4}$$
. Wall
$$y=-2\left(\frac{3}{4}-4\right)\left(\frac{3}{4}\right)45$$

$$y=-2\left(\frac{-13}{4}\right)\left(\frac{13}{2}\right)$$

$$y=\frac{169}{4}$$
MAX

ii)
$$y = (10 + 2x)(-2x - 4)$$

a)
$$y = -20x - 40 - 4x^2 - 8x$$
 a) $y = (-6+3x)(4-2x)$
 $y = -4x^2 - 28x - 40$ $y = -6x^2 + 24x - 8$
 \therefore direction is down $y = -6x^2 + 24x - 8$

c) ags
$$x = \frac{5+2}{2}$$

$$y = (10 + 2(-\frac{1}{2}))(-2(-\frac{1}{2}))$$

$$y = (3)(3)$$

$$y = 9 \text{ MAX}$$

iii)
$$y = -(6 - 3x)(4 - 2x)$$

$$y = (-6+3a)(4-2x)$$

 $y = -6x^2 + 24x - 24$
 $\therefore direction is down$

e) vertex
$$(2,0)$$

- 5. For the following equations answer the following:
- a) State the transformations of this parabola
- b) Sketch the relation (use vertex and step pattern, or table of values)
- c) Find the maximum or minimum.
- d) When did the parabola reach the maximum/minumum?

c) MAX y= 3 d) at x = 8

6. Evaluate. Express your answer in rational form. Explain how you found your answer.

a)
$$(-3)^{-4} = \frac{1}{(-3)^{4}} = \frac{1}{81}$$

c)
$$-(-6)^{-3} = -\frac{1}{(-6)^3} = -\frac{1}{216} = \frac{1}{216}$$

$$d) 7^{-3} \div \left(\frac{7^{2}}{7^{1}}\right)^{-2} \qquad e) -9^{-2} + \left(\frac{9^{1}}{6^{2}}\right)^{-1} \qquad f) \frac{4^{3}}{16^{0}} \times \left(\frac{5^{2} \times 5^{-3}}{5^{2} \times 5^{-3}}\right)^{-2} = 7^{-3} \div \left(\frac{3}{3}\right)^{-2} = -\frac{1}{9^{2}} + \left(\frac{9}{3}\right)^{-1} = \frac{4^{3}}{16^{0}} \times \left(\frac{5^{2} \times 5^{-3}}{5^{2} \times 5^{-3}}\right)^{-2} = -\frac{1}{81} + \left(\frac{1}{4}\right)^{-1} = 64 \times (5)^{2} = -\frac{1}{81} + \frac{1}{4^{-81}} = \frac{323}{81} = 64 \times 35 = 1600$$

$$e)^{-9^{-2}} + \left(\frac{9^{1}}{6^{2}}\right)^{-1}$$

$$= -\frac{1}{9^{2}} + \left(\frac{9}{36}\right)^{-1}$$

$$= -\frac{1}{81} + \left(\frac{1}{4}\right)^{-1}$$

$$= -\frac{1}{81} + \frac{1}{4} \cdot 8 = \frac{323}{81}$$

$$= \frac{1}{160} \times \left(\frac{5^{2} \times 5^{-3}}{5^{2} \times 5^{-3}}\right)^{-2}$$

$$= -\frac{1}{81} + \left(\frac{1}{4}\right)^{-1}$$

$$= -\frac{1}{81} + \frac{1}{4} \cdot 8 = \frac{323}{81}$$

$$= \frac{1}{1600}$$

 $= 7^3 = 343$ \ 8\ \ 8\ \ 8\ \ 8\ \ 7. Without evaluating, write the given numbers in order from least to greatest. $6^{-5}, 2^{-1}, (-8)^3, (0.001)^{-2}, (-10)^4$

$$(-8)^{3}$$
, 6^{-5} , 2^{-1} , $(-10)^{4}$, $(0.001)^{-2}$

4